

Department of Mathematics

(AFFILIATED COLLEGES)

PONDICHERRY UNIVERSITY

UG Degree (BS Honours) with Research in Mathematics

NATIONAL EDUCATION POLICY (NEP 2020) REGULATIONS-2023

ACADEMIC YEAR 2025-2026 ONWARDS

1. Definitions:

Terms used in the NEP-CBCS Regulations shall have the meaning assigned to them as given below, unless the context otherwise requires:

- a. Credit: A credit is the number of hours of instruction required per week for the given subject in a given semester of 16-18 weeks. One credit is equivalent to 15 hours of teaching (lecture or tutorial) or 30 hours of practice or fieldwork or community engagement, and service per Semester.
- **b. Academic Year**" means the year starting on the 1st day of July and ends on the 30th day of June succeeding year.
- **c.** "Residence time" means the time a student spends attending classes in the College/Institution (either Online/Offline) as a full-time student and enrolled in any Academic programme of the Institution.
- **d.** "Semester" means 18 weeks (90 Working days) of teaching-learning session, of which two weeks shall be set apart for exaTOPminations and evaluation;
- **e.** "Grade" means a letter grade assigned to a student in a Course for his performance at academic sessions as denoted in symbols of: O(outstanding), A+(Excellent), A (Very good), B+ (good), B (Above average), C (average), P (Pass) F (fail) and Ab (Absent) with a numeric value of O=10, A+=9, A=8, B+=7, B=6, C=5 P=4, and F=0, Ab=0;
- **f.** "Grade Point Average (GPA)" means an average of the Grades secured by a student in all courses in a given academic session duly weighted by the number of credits associated to each of the courses;
- **g.** "Cumulative GPA (CGPA)" is the weighted average of all courses the student has taken in a given Programme;
- h. "A common Course" means the set of courses that all students who are admitted to any Programme of the University are required to study; these courses include, Languages (Englishmodern Indian languages), NEP specific courses- viz. Understanding India, Environmental sciences/Education, Health and wellbeing/Yoga, Digital & Technological solutions;
- i. "Major Discipline" means the core subject mandatory for the programme, Major discipline may be a single discipline or interdisciplinary/ multidisciplinary courses. Eg. B.Sc. (Maths) or B.Sc. (Maths and Chemistry)
- j. "Minor Discipline" means allied or elective subjects to major discipline.
- (i) "Minor discipline Cognate" refers to a pool of courses offered by the parent department/ cognate (allied) departments. Eg. B.Com(General) may have minors streams leading in 2/3 to B.Com (Accounting

- & Taxation), B.Com(Banking&Finance), B.Com(Company Law & Corporate Secretaryship) or B.Com(Computer app and Data Analcs)
- (ii) "Minor discipline Generic" refers to the subsidiary/elective subjects chosen from a basket of courses offered by different departments other than the minors offered by the parent department. Eg. B.Com. (Corporate Economics)
- **k.** "Credit Requirement" for a Degree/Diploma/Certificate Programme means the minimum number of credits that a student shall accumulate to achieve the status of being qualified to receive the said Degree, Diploma/Certificate as the case may be;
- **l.** "Exit option" means the option exercised by the students, to leave the Programme at the end of any given Academic year; "Lateral entry" means a student is admitted into an ongoing Programme of the University otherwise than in the 1st year of the programme.
- **m.** "Vocational Studies/Education" This refers to a set of activities for participation in an approved project or practical or lab, practices of application of scientific theories, studio activities involving students in creative artistic activities, workshop-based activities, field-based shop-floor learning, and Community engagement services, etc
- **n. Skill-based learning/project:** This refers to activities designed to understand the different socioeconomic contexts, a first-hand understanding of the policies, regulations, organizational structures, processes, and programmes that guide the development process.
- **o. Work-based internship -** This refers to structured internships with local industries, businesses, artists, crafts persons, etc., which will further improve employability.

2. Programme Outcomes

Upon successful completion of the Bachelor of Science (B.Sc.) program in Mathematics students will achieve the following outcomes:

UG Certificate Level

- Mathematical Foundation: Develop a strong understanding of fundamental concepts in Mathematics, emphasizing its theoretical and applied aspects.
- Introductory Skills in Data Science: Gain exposure to Python and R programming and problem-solving techniques relevant to Data Science.

UG Diploma Level

- Programming Competence: Develop practical programming skills and gain hands-on experience with data analysis using computational tools.
- Integration of Disciplines: Familiarize with computational techniques and their applications in Mathematics and Data Science.

UG Degree Level

- Applied Mathematics: Utilize advanced mathematical methods to tackle real-world problems.
- Multidisciplinary Applications: Apply mathematical modeling in solving challenges across various domains.

UG Degree with Honors / Honors with Research

• Mathematical Research: Acquire the ability to conduct mathematical research, contributing to innovations in applied mathematics and related fields.

• Insightful Communication: Excel in articulating complex mathematical and data-driven findings through detailed reports, data visualizations, and professional presentations.

3. DURATION, ELIGIBILITY & AWARD OF UG DEGREE/DIPLOMA/CERTIFICATE

3.1. Duration of the Programme

The duration of the UG programme is 4 years or 8 semesters. Students who desire to undergo a Three-year UG Programme will be allowed to exit after completion of the 3rd year. If a student wants to leave after the completion of the first or second year, the student will be given a UG Certificate or UG Diploma, respectively, provided they secure the prescribed number of credits (as given in table below).

3.2. Eligibility

Senior Secondary School Leaving Certificate or Higher Secondary (12th Grade) Certificate obtained after successful completion of Grade 12 or equivalent stage of education corresponding to Level 4 (Levels in NHEQF). For detailed eligibility conditions, refer the Admissions and Lateral Section below.

3.3. Awarding of UG Certificate, UG Diploma and Degrees Nomenclature

Four years B.Sc. Degree Programme shall have options for earning a Certificate / Diploma / UG Degree / UG Degree (Honors) / UG Degree (Honors with Research) based on the exit option exercised by the candidates.

3.3.1. UG Certificate

Students who opt to exit after completion of the first year (2 Semesters) and have earned a minimum of 40 credits will be awarded a UG certificate in Mathematics if, in addition, they complete work based vocational course / internship of 4 credits during the summer vacation of the first year.

3.3.2. UG Diploma

Students who opt to exit after completion of the second year (4 Semesters) and have earned a minimum of 80 credits will be awarded the UG diploma in Mathematics if, in addition, they complete work based vocational course / internship of 4 credits during the summer vacation of the second year.

3.3.3. Three-year UG Degree

Students who wish to discontinue after the 3-year (6 Semesters) UG programme will be awarded a UG Degree in Mathematics after successful completion of three years, earning a minimum of 120 credits and satisfying the minimum credit requirements as mentioned in Table1 below.

3.3.4. Four-year UG Degree (Honors)

A four-year UG Honors degree in Mathematics will be awarded to those who complete a four-year (8 Semesters) degree programme, earning a minimum of 160 credits and have satisfied the credit requirements as mentioned in Table 1.

3.3.5. Four-year UG Degree (Honors with Research)

Students who secure a minimum of 6 CGPA in the first six semesters and wish to undertake research at the undergraduate level can choose a research stream in the fourth year. They should do a research project or dissertation under the guidance of a faculty member of the Institution.

The research project/dissertation will be in the major discipline. The students who secure a minimum of 160 credits, including 12 credits from a research project/dissertation, will be awarded a UG Degree in Mathematics (Honors with Research).

3.3.6. Programme overview

As per the guidelines of NEP, students are mandated to complete 120 credits to complete a basic Bachelor's Degree in 3 years. With an additional 40 credits of course work one can pursue 4th Year Honors or Honors with Research Degree. The UG Programme will consist of the following categories of courses and the minimum credit requirements for 3-year UG and 4-year UG(Honors) or UG (Honors with Research) programmes are given below.

Table.1 Breakup of Credits and Courses – Minimum Requirements

	BREAKUP OF CREDITS AND COURSES				
Sl.No.	Component	3 Year Degree	4 Year Hons Degree		
1	Major Disciplinary Courses	60 Credits (15 Courses of 4 credits each)	80 Credits (20 Courses of 4 credits each)		
2	Minor Discipline Courses	24 Credits (6 Courses of 4 Credits each)	32 Credits (8 Courses of 4 credits each)		
3	Multi-Disciplinary Courses	9 Credits(3 courses of 3credits each)	9 Credits (3 courses of 3 credits each)		
4	Ability Enhancement Courses	8 Credits(4 courses of 2 credits each)	8 Credits (4 courses of 2 credits each)		
5	Skill Enhancement Course	9 Credits(3 courses of 3 credits each)	9 Credits (3courses of 3 credits each)		
6	Common Value added courses	8 Credits(4 course of 2 credits each)	8 Credits (4 course of 2 credits each)		
7	Community Science	2 Credits(1 field based course)	2 Credits (1 field based course)		
8	Research Dissertation Project	-	12 Credits(Project report & background subjects)		
9	Total credits required	120 Credits	160 Credits		

Note: Honors students not undertaking research will do 3 courses for 12 credits in lieu of a Research Project / Dissertation.

3.3.7. Degree and Nomenclature

Candidates who complete Eight semesters earn a minimum of 160 credits and have satisfied the credit requirements as mentioned in the table below will be awarded either of the following degrees.

- 1. B.Sc. Mathematics
- 2. B.Sc. Mathematics (Honors)#
- 3. B.Sc. Mathematics (Honors with Research)##

[#] for candidates who complete 3 theory courses (MJD 21, MJD 22, and MJD 23) instead of the research project work in the Eighth Semester.

^{##} for candidates who complete a research project work in the Eighth Semester

3.3.8. Exit Options and Nomenclature of Certificate, Diploma

Candidates can exercise the following exit options and obtain the said certificate or diploma or degree, if the minimum required credits are earned and other conditions are met. Students exercising the option of exit at the end of 2nd semester or 4th semester need to have completed an internship for atleast 8 weeks along with the necessary credit requirements to qualify for the relevant certificate or diploma. In any case, every student, whenever exit (or complete the 4 year programme), should have completed atleast one internship for a minimum period of 8 weeks.

Exit after 2nd Semester: Certificate in Mathematics will be awarded for candidates who exit the course at the end of 2_{nd} semester and earned a minimum of 40 credits and have completed a Summer Internship of 4 credits for a minimum period of 8 weeks, during the summer vacation post 2_{nd} semester.

Exit after 4th Semester: Diploma in Mathematics will be awarded for candidates who exit the course at the end of 4th semester and earned a minimum of 80 credits and have completed a Summer Internship of 4 credits for a minimum period of 8 weeks, during the summer vacation post 4th semester.

Exit after 6th Semester: UG Degree in Mathematics (B.Sc. (Mathematics)) will be awarded for candidates who exit the course at the end of 6th semester and earned a minimum of 120 credits and have completed a Summer Internship of 4 credits for a minimum period of 8 weeks, during the summer vacation post 4th semester.

Exit after	Credits and other requirements	Awards
2nd Semester	Min: 40 Credits & Internship	Certificate in Mathematics
4th Semester	Min: 80 Credits & Internship	Diploma in Mathematics
6th Semester	Min: 120 Credits & Internship	B.Sc. Mathematics

4. NEP Classification of Courses:

i) Major Disciplinary courses (MJD): (60/80 credits)

Major disciplinary courses are subject specific compulsory subjects that a student has to complete to obtain the UG/UG (Hons) Degree in the given discipline. Major disciplinary courses shall constitute 50% of the total credits.

All discipline specific major courses shall be designed for 4 credits each with one/two additional hours or guidance of teaching at Tutorials/Practicals.

UG programmes may be offered in a single major discipline or in Multiple Major disciplines giving equal weightage in credits. For example a B.Sc. course may be in a single discipline like B.Sc. (Maths) or with multiple major disciplines like B.Sc. (Maths, Data science, Statistics).

ii) Minor Disciplinary Course (MID): (24/32 credits)

Minor disciplinary courses refer to those subjects which are Allied/Specialization/Elective subjects to the Major discipline. These allied courses are expected to provide additional understanding of the subject in a specific focused area. Minor disciplinary courses(MID) may also be designed by the parent department or collaborated with sister departments. Parent departments may introduce minor specializations to students by offering a set of 6 to 8 courses in one/two streams as electives or specialization subjects. In order to provide students with a choice of particular specialization/elective, the BOS may develop 2 to 3 streams of minor specialization courses to focus on such trades for better placement of students. Each stream of 6/8

specialization/elective subjects may facilitate the award of two/three unique degrees in a given major Eg, B.Sc. (Physical Chemistry), B.Sc. (Pharmaceutical Chemistry), etc.

iii) Multi-Disciplinary courses (MLD): (9 Credits)

All undergraduate students must pursue 9 credits worth of courses in such Multi-disciplinary areas/Courses from NEP-defined subjects. Colleges may identify any 3 multiple-disciplinary streams listed below based on the availability of resources and manpower.

- a) Natural Sciences
- c) Mathematics & Statistics
- e) Data Analysis
- g) Humanities
- i) Library Science

- b) Physical Sciences
- d) Computer Science/Applications
- f) Social Sciences
- h) Commerce & Management
- i) Media Sciences, etc.

Students are expected to learn basic/introductory courses designed by other departments for this purpose. Colleges may list any 3 introductory courses (one each in Natural Sciences, Physical Sciences, Humanities) for uniform adoption of all UG students.

iv) Ability Enhancement (AEC) courses: (8 Credits)

All Undergraduate (UG) students are mandated to complete at least 8 Credits worth of Courses which focus on Communication and Linguistic skills, Critical reading, and writing skills. These courses are expected to enhance the ability in articulate and presentation of their thoughts at the workplace. Colleges may design these ability enhancement courses tuned to the requirements of given major discipline.

v) Skill Enhancement Course: (9 Credits)

Ability Enhancement Course			
I. English Language (two courses)	II. Indian Language (two courses)		
 a) English Language & Literature 1 and 2 b) Functional English – 1 and 2 c) Communicative English – 1 and 2 	 a) Indian language & Literature 1 and 2 b) Functional language – 2 c) Communicative language – 1 and 2 		

These courses focus at imparting practical skills with hands-on Training. In order to enhance the employability of students, Colleges are expected to design such courses that they deem fit for their students for better employment/entrepreneurship/career development, etc. Colleges may also outsource the Skill Enhancement Courses to AICTE approved agencies for conducting short term Training Workshops, Skill India initiatives of GOI and approved Trades by Skill development of corporation are to be considered, short term courses.

vi) Value Added Common courses (VAC): (8 credits)

Under NEP, the UGC has proposed for 6 to 8 credits worth of common courses which are likely to add

value to overall knowledge base of the students. These courses include:

- a) Understanding India
- b) Environmental Science/Education, Higher Order Thinking
- c) Digital and Technological solutions
- d) Health & Wellness, Yoga Education, Sports & Fitness, Universal Human Values

The course structure and coverage of topics are suggested by UGC in its draft documents; colleges/UG Boards of Studies may design the methodology for conducting these value-added courses.

vii) Community Engagement and Service (CES) (2 credits)

All UG students are also mandated to participate in a 15-day community engagement activity during their winter vacation between the 5th and 6th Semesters. This Community engagement activity is expected to expose the students to the social problems of the neighborhood village. students may prepare a report on the activities carried out for an award of 2 credits.

viii) Summer Internship (2 to 4 Credits)

As per the UGC guidelines, all UG students should be exposed to a 4 to 6-week Summer Internship in an industrial organization/Training Centers/Research Institution, etc. Such a Summer Internship is to be conducted between the 4th and 5th semesters. A review of the report and award of grade based on work-based learning by students is to be recorded during the 5th Semester.

ix) Research Project (12 Credits)

All UG (Hons) Degree students are expected to conduct a semester long

Research work - during their 8th Semester and submit a Research Report. Students may be given necessary guidance by faculty members in identifying the research problem, conduct of study and preparation of a Project Report. All these Research Reports are evaluated by a Jury of external experts. A presentation of Results and Viva may also be part of evaluation. A Publication out of findings of the Research Project may also be encouraged.

Levels of Courses:

The levels are:

0 to 99 = Pre requisite/ Bridge courses

100 to 199 = Foundation courses/Introductory courses

200 to 299 = Intermediate Level courses

300 to 399 = Core courses/Advanced courses

400 and above = Specialization subjects

Semester -wise Break up of Courses for 3 year UG and 4 Year UG (Hons) Degree programmes

Incorporating the focus of NEP in terms of different categories of courses and award of Certificates, Diplomas and Degrees during different stages of 4 year Degree programmes, a template for Semester-wise course work was designed by the UGC and presented in para 5.3 of "Curriculum Framework". Salient features of it are as follows:

• Every Semester shall have a minimum of 20 credits worth of courses.

- Credits for a course shall be decided on the basis of number of Contact hours of the teaching in a classroom. One credit means one hour of Teaching in case of Theory subject and at least 2 hours of conducting Practical in hours case of Lab subjects.
- All Major and Minor disciplinary Courses shall have 4 credits with 6 hours of work load (including 2 hours of tutorials)
- Language courses, ability enhancement, skill enhancement and value added common course also will have 2 hours of hands on training.
- Students can exercise his/her choice for exiting the course at the end of every Academic year.
- Semester I and II shall focus on introductory courses/subjects in Major/Minor disciplines and shall focus on providing knowledge in Multidisciplinary areas, skill enhancement and ability enhancement courses.
- Semester III and IV shall focus on Core disciplinary courses with a focus on building strong foundation in the given Discipline.
- Semester V and VI shall focus on providing in-depth knowledge and skills required for taking up a career in the given discipline.
- Semester VII and VIII shall focus on Advanced knowledge and shall direct the students to take up socially relevant projects/Research works newer applications of the knowledge. While directing the above mentioned requirements, UGC has designed a Template for each Semester.

Eligibility:

All students who have completed their Higher Secondary School Certificate are eligible for admission into an undergraduate degree programme, subject to securing m50% of marks at 12th standard with a minimum of 50% of marks with Mathematics or equivalent stage of education to Level-4 (Levels in NHEQF).

Admissions:

As per the NEP, students shall be admitted to Undergraduate Programmes on basis of merit order in an All India Admission Test like CUET, NEET, etc. However, the respective State/UT Governments shall decide the order of merit for admission of students for different courses offered at Colleges.

Lateral Entry:

As per NEP, students have a choice of exit and entry into the Programme of Study multiple number of times. UGC specifies that about 10% of seats over and above the sanctioned strength shall be allocated to accommodate the Lateral Entry students. Detailed guidelines for lateral Entry would be finalized by the University shortly.

ANNEXURE - I

PONDICHERRY UNIVERSITY NEP

NEP SEMESTER WISE COURSE STRUCTURE FOR UG AND UG (HONS) COURSES

Semester	Levels of Teaching	Major Disciplinary	Minor Disciplinary Courses	Multi- Disciplinary	Ability Enhancement	Skill Enhancement	Value added /Common	Total Credits
Semester	reaching	Courses	Courses	Courses	courses	Courses	Course	Credits
			(Total Credits:				(Total Credits: 8)	
		(Total Credits: 60/80)	24/32)	(Total Credits: 9)	(Total Credits: 8)	(Total Credits: 9)	(**************************************	
- 1	100	MJD-I	MID-I	MLDC-I	AEC-I	SKE-I	VAC I and II	Total
		Major	Minor Disciplinary	Multi-	Ability	Skill Enhancement	NEP special common	courses in
	Level	Disciplinary	Course -1	Disciplinary	Enhancement	Course-1	courses (two)	Semester I
		Course - 1		Course-1	course	15 Practicals	1. Environmental	-7
			(2 to 3 stream of		English -1	(3 Cr)	Sciences/Education	
			Minor)	Natural	(4 Hours	2 to 3 streams of	(2 Cr)	
				Sciences	Teaching)	Hands on Training		
				(3 Cr)	Language Course		2. Understanding India	
		4Cr	40	3 Cr	4 hrs of Teaching	3 Cr	(2 Cr) 4 Cr	20
II	100	MJD - 2	MID-II	MLDC-II	AEQ-II	SKE-II	VAC III & IV	Total
		Major	Minor Disciplinary	Multi-	Language course-	Skill Development	NEP Special/Common	courses in
	Level 1	Disciplinary	Course -2	Disciplinary	2	Course	courses -3,4	Semester
		Course – 2	2 to 3 streams of	Course-2	English - 2	Practicals - 2	3. Health & Yoga	II - 7
			minor courses	Physical	(2 Cr)	(3 Cr)	(2 Cr)	
		4 Cr	401	Sciences 3 Cr	(4 Hrs of Teaching) 2+1	3 Cr	4. Digital Technology (2 Cr) 4 Cr	20
Certificate	for exiting s	tudents provided	that they undergo 4 c	redits Internship d	luring Summer Vaca	tion in the given strea	m of skill training	

Semester	Levels of Teaching	Major Discipline Course	Minor Discipline Course	Multi- Disciplinary Course	Ability Enhancement courses	Skill Enhancement Courses	/Common Course	Total Credits
		(Total Credits: 60/80)	(Total Credits:	(Total Credits:	(Total Credits: 8)	(Total Credits: 9)	(Total Credits: 8)	
III	200 Level	MJD – III & IV Major Disciplinary Course - 3 Major Disciplinary Course - 4	MID-III Minor Disciplinary Course -3 (Allied/Elective) (4 Cr)	MDC-III Multi- Disciplinary Course-3 Basics of Humanities (3 Cr)	AEC-III Ability Enhancement course Indian Language - 1 (4 Hours Teaching)	SKE-III Skill Development Course Practicals (3 Cr)		Total courses in Semester III - 6
IV	200 Level	Major 5 (4 Cr) Major 6 (4 Cr) Major 7 (4 Cr)	Minor 4 (4 Cr)		AEC - 4 Indian Language - 2 (2 Cr) 2+1 Cr	0	Winter Project (Community engagement 15 days)	Total courses in Semester IV - 6

Semester	Levels of Teaching	Major Discipline Course	Minor Discipline Course	Multi- Disciplinary Course	Ability Enhancement courses	Skill Enhancement Courses	Value added /Common Course	Total Credits
V	300 Level	Major 8 Major 9 Major 10	Minor 5 (4 Cr)	-	-	Summer Internship for 60 Days (4 Cr) (Main -15)	-	Total courses in Semester V – 5
		12Cr	4Crr	0	0	407	0	20
VI	300 Level	Major 11 Major 12 Major 13 Major 14	Minor 6 (4 Cr)	-	-	-	-	Total courses in Semester VI – 5
		4*4 (16 Cr)	4Crr	0	0	0	0	20
Total courses for a UG Degree		15 Courses	6 Courses	3 Courses	4 Course	3 Course	4 Course	Total courses for a 3 yr UG Degree
		60 Cr	24 Cr	9 Cr	8 Cr	9 Cr	8 Cr	120C

UG Hons Degree

Semester	Levels of Teaching	Major Discipline Course (Total Credits	Minor Discipline Course (Total Credits	Multi- Disciplinary Course	Ability Enhancement courses	Skill Enhancement Courses	Value added /Common Course	Total Credits
		80)	32)					
VII	400	Major 16 Major 17 Major 18 (12 cr)	Minor 7 Minor 8 (8 Cr)	-	-	-	-	20
		12	8					
VIII	400	Major 19 Major 20 (8 cr)	-		Research Proj Research (or)	+ Viva		12
		8			3 Additional Major (Courses (3*4=12)	1	20
Total Course		20 courses	8	3 Course	4 Course	3 Course	4 Course	52 Course
		80 Credits	32	9	8	4	8	

- UG (hons) Degree by Research
- UG (hons) Degree by Coursework

EVALUATION:

Total Marks: 100:

All Credit courses are evaluated for 100 marks. Internal Assessment component is for 25 marks and the End Semester University exam is for 75 marks. In case of Practical, Project work etc., it is 50:50 marks for Internal and End-Semester Exams.

Break up of Internal Assessment marks:

Total Internal Assessment mark for a theory subject is 25 marks. The breakup is:

a)	Mid Semester Exam (one) -	20 Marks
b)	Percentage of Attendance -	5 Marks
	Total -	25 Marks

Marks for Attendance is as follows:

Below 75%	0
75% - 80%	1
80% - 85%	2
85% - 90%	3
90% - 95%	4
95% - 100%	5

Internal Test Scheme:

Principal of the College schedules the Mid-Semester Exam for all courses during 8/9th week of start of classes. All faculty members are expected to conduct this Mid-Semester exam for 1.30 hr. duration and evaluate, upload the marks to Controller of Examinations of University. Colleges are also requested to preserve the answer books of Mid-Semester exams until declaration of results by the University.

Internal Assessment marks for Practicals/Project work/ Internships subjects:

The faculty member in-charge of Lab practicals shall evaluate the practical subjects for 50 marks. The break up is as follows:

a) Observation note/Demo note/Work dairy	20
b) Practical Record/Internship Report	30
Total	50

End-Semester University Exam:

Controller of Examinations (COE) of Pondicherry University schedules the End-Semester exams for all theory and practical subjects based on University calendar. A detailed Exam Time Table shall be circulated to all Colleges at least 15 days before the start of exams mostly during 15/16th week of the Semester. Question Papers shall be set externally based on BOS approved syllabus. All students who have a minimum of 70% attendance are eligible to attend the end semester exams. The breakup of end semester marks:

a) Theory subjects (Sec A, Sec B and Sec C) Question from all units of syllabus	75 marks
b) Practical/Internship Project Work subjects (Based on Practical Exams/Presentation/Viva)	50 marks

QUESTION PAPER PATTTERN MAXIMUM MARK: 75 TIME: 3 HOURS

SECTION A	SECTION B
FIVE QUESTIONS	FIVE QUESTIONS
(5X5 = 25)	(5X10 = 50)
Either Or Type	5 out of 8 questions
Internal Choice 1 set of questions from each Unit.	1 question from each Unit compulsory.

Section	Number of Questions	Allocation of questions	Choice Type	Mark per question	Total marks
A	5	1 set from each Unit	Either or type	5	5X5=25
В	5	2 questions from Unit 1	5 out of 8	10	5X10=50
		2 questions from Unit 2			
		2 questions from Unit 3			
		1 question from Unit 4			
		1 question from Unit 5			

Consolidation of Marks and passing Minimum

Controller of Examinations of the University consolidates the Internal Assessment marks uploaded by the Colleges and marks secured by students in the end-semester examination. The total marks will be converted into letter grades as shown in the following Table 2. As per NEP Regulations, the passing minimum is 50% marks (IA + End Semester put together) However, Pondicherry University considers 40% marks as a pass during the first 3 years of study and students who secured less than 50 will be awarded 'P' (Pass Grade)

Arrear Exam:

A student who failed to secure 50% marks in aggregate is declared as Failed and he is eligible to take up supplementary examination by registering for the said course in the following Semester. All other candidates who failed due to a shortage of attendance, and those who are seeking to improve the grade, shall repeat the course.

Letter Grades and Calculation of CGPA:

The Total Marks Secured by a student in each subject shall be converted into a letter grade. The UGC Framework has suggested a countrywide uniform letter grade for all UG courses. The following Table shows the seven letter grades and corresponding meaning, and the grade points for the calculation of CGPA.

Equivalent Letter Grade	Meaning	Grade Points for Calculation of CGPA
О	Outstanding	10
A+	Excellent	9
A	Very Good	8
B+	Good	7
В	Above Average	6
C	Average	5
P	Pass	4
F	Fail	0
Ab	Absent	0

In order to work out the above letter grades, the marks secured by a student (Total of IA and Semester End) would be categorized for relative grading. The ranges of marks for each grades would be worked as follows:

Highest marks in the given subject : X

Cut of marks for grading purpose : 50 marks

Passing mark (for 3 year of UG) = 40

Number of grades (excepting P grade)(O,A+,A,B+,B,C) = 6

Range of marks = K=(x-50)/G

The following table given the range of marks and letter grades. According to K value, one of the following grading scheme will be followed.

(i) If $K \ge 5$, then the grades shall be awarded as given in Table II.

Table II				
Range of Marks in %	Letter Grade Points for	Letter Grade Points for		
X to $(X-K)+1$	О	10		
(X-K) to $(X-2K)+1$	A+	9		
(X-2K) to (X-3K)+1	A	8		
(X-3K) to $(X-4K)+1$	B+	7		
(X-4K) to (X-5K)+1	В	6		
(X-5K) to 50	С	5		
40 – 49	P	4		
Below 40	F	0		
Absent (Lack of Attendance)	Ab	0		

(ii) If K<5, then the grades shall be awarded as given in Table III.

Table III					
Range of Marks in %	Letter Grade Points for	Letter Grade Points for			
80-100	O	10			
71-79	A+	9			
66-70	A	8			
61-65	B+	7			
56-60	В	6			
50-55	С	5			
40-49	P	4			
Below 40	F	0			
Absent (lack of attendance)	Ab	0			

Calculation of Semester Grade Point average and CGPA:

Computation of SGPA and CGPA

The following procedure shall be followed to compute the Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA):

The SGPA is the ratio of the sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student,

i.e., **SGPA** (Si) = Σ (Ci x Gi) / Σ Ci, where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course.

(i) Example for Computation of SGPA (candidate not failed in any course)

Semester	Course	Credit	Letter Grade	Grade point	Credit Point (Credit x Grade)
I	Course 1	3	A	8	3 X 8 = 24
I	Course 2	4	B+	7	4 X 7 = 28
I	Course 3	3	В	6	3 X 6 = 18
I	Course 4	3	О	10	3 X 10 = 30
I	Course 5	3	С	5	3 X 5 = 15
I	Course 6	4	В	6	4 X 6 = 24
		20			139
	SGPA				139/20=6.95

(ii) Example for Computation of SGPA (candidate has failed in one course.)

Semester	Course	Credit	Letter Grade	Grade point	Credit Point (Credit x Grade)
I	Course 1	3	A	8	3 X 8 = 24
I	Course 2	4	B+	7	4 X 7 = 28
I	Course 3	3	В	6	$3 \times 6 = 18$
I	Course 4	3	О	10	3 X 10 = 30
I	Course 5	3	С	5	3 X 5 = 15
I	Course 6	4	F	0	$4 \times 0 = 00$
		20			115
			SGPA		115/20=5.75

(iii) Example for Computation of SGPA (candidate has failed in two courses.)

Semester	Course	Credit	Letter Grade	Grade point	Credit Point (Credit x Grade)	
I	Course 1	3	A	8	3 X 8 = 24	
I	Course 2	4	B+	7	7	4 X 7 = 28
I	Course 3	3	F	0	$3 \times 0 = 00$	
I	Course 4	3	В	6	$3 \times 6 = 18$	
I	Course 5	3	C	5	$3 \times 5 = 15$	
I	Course 6	4	F	0	$4 \times 0 = 00$	
		20			85	
	SGPA					

The CGPA shall also be calculated in similar way as shown in examples (i), (ii) and (iii) of SGPA for all subjects taken by the students in all the semesters. However, if any student fails more than once in the same subject, then while calculating CGPA, the credit and grade point related to the subject in which the student fails in multiple attempts will be restricted to one time only. The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

In case of audit courses offered, the students may be given (P) or (F) grade without any credits. This may be indicated in the mark sheet. Audit courses will not be considered towards the calculation of CGPA.

Declaration of Results:

Controller of Examinations (COE) of the University shall declare the results of given UG programme following the CGPA secured by students by the end of 6th Semester and 8th Semester.

PASS CLASSES

Range of CGPA	Result
9.0 above	First Class with distinction
6.0 above	First Class
5.0 Below 5.99	Second Class
4.0 - 4.99	Pass Class

PONDICHERRY UNIVERSITY

RAMANUJAN SCHOOL OF MATHEMATICAL SCIENCES

DEPARTMENT OF MATHEMATICS

NEP CURRICULUM & SYLLABI FOR THE FOUR YEAR

B.Sc (Honours) with Research in MATHEMATICS OFFERED IN

AFFILIATED COLLEGES

TO BE IMPLEMENTED
WITH EFFECT FROM THE ACADEMIC YEAR
(2025-26 onwards)

<u>Implementation of NEP in Affiliated Colleges NEP courses structure from the Academic Year 2025-26</u>

Title of the Degree Programme (4 years): Bachelor of Science in Mathematics

(Honours with Research)

Titles of the Degree Programme (3 years): Bachelor of Science in Mathematics

Titles of Diplomas embodied (2 years) : UG Diploma in Mathematics

Titles of Certificates embodied (1 year) : UG Certificate in Mathematics

I. LIST OF MAJOR COURSES (Single Major)

SL. No	Nature of Course	Title of the Course(Single Major)	Credits	No. Hours of Teaching
1.	Major 1	Calculus	4	5
2.	Major 2	Matrices and Theory of Equations	4	5
3.	Major 3	Real Analysis - I	4	5
4.	Major 4	Optimizations Techniques	4	5
5.	Major 5	Real Analysis - II	4	5
6.	Major 6	Group Theory	4	5
7.	Major 7	Elements of Differential Equations	4	5
8.	Major 8	Computational Mathematics (Practical)	4	5
9.	Major 9	Ring Theory	4	5
10.	Major 10	Complex Analysis-I	4	5
11.	Major 11	Graph Theory	4	5
12.	Major 12	Introduction to Linear Algebra	4	5
13.	Major 13	Complex Analysis-II	4	5
14.	Major 14	Numerical Methods (Practical)	4	5
15	Major 15	Advanced Algebra	4	5
16	Major 16	Topology	4	5
17	Major 17	Advanced Real Analysis-I	4	5
18	Major 18	Advanced Real Analysis II	4	5
19	Major 19	Advanced Linear Algebra	4	5
20	Major 20	1. Differential Geometry	4	5
21	Major 21	2. Number Theory	4	5

			3.	Discrete Dynamical Systems			
			4.	Numerical Analysis for Ordinary			
]	Differential Equations			
			5.	Lattice Theory			
			6.	Integral Transforms and Their			
2	22	Major 22	1	Applications	4	5	
		3	7.	Integral Equations			
			8.	Partial Differential Equations			
			Note:-	•			
			Students	s shall choose any of the above three courses from			
			(1) to (8	8) if they do not choose the Research Project/			
			Dissertat	tion.			

- ➤ In semester V, MJD-8 (Computational Mathematics-Practical) will each include two additional hours of practical work.
- ➤ In semester VI, MJD-14 (Numerical Methods-Practical) will include two additional hours of practical work.
- > Tutorial hours of one hour can be added to problem-oriented papers, depending on the available free hours.

II. LIST OF MINOR COURSES (ELECTIVES/ALLIED/SPECIALISATION)

a) With Minor Stream I (within Department and other disciplines)

SL. No	Title of the Minor Course(Single Major)	Credits	No. Hrs. of Teaching
Minor 1	Foundations of Data Science-I	4	5
Minor 2	Foundations of Data Science-II	4	5
Minor 3	Exploratory Data Analysis (Practical)	4	5
Minor 4	Data Wrangling with R (Practical)	4	5
Minor 5	Probability and Statistics	4	5
Minor 6	Interactive Data Visualization (Practical)	4	5
Minor 7	Calculus of Variations	4	5
Minor 8	Differential Equations and Special Functions	4	5

b) Minor Stream II (For all Disciplines)

> Stream II is designated for students from Arts, Commerce and Humanities.

Sl. No	Title of the Minor Course(Single Major)	Credits	No. Hours of Teaching
Minor 1	Computational Skills	4	5
Minor 2	Business Statistics	4	5
Minor 3	Numerical Analysis	4	5
Minor 4	Optimization Techniques-I	4	5
Minor 5	Optimization Techniques-II	4	5
Minor 6	Applied Statistics	4	5

c) Minor Stream III

> Minor Stream III is tailored for students pursuing a B.Sc. in Physics, Chemistry, or other science courses(Other than Mathematics).

SL. No	Title of the Minor Course(Single Major)	Credits	No. Hours of Teaching
Minor 1	Matrices and Trigonometry	4	5
Minor 2	Calculus	4	5
Minor 3	Vector Calculus	4	5
Minor 4	Introduction to Differential Equations	4	5
Minor 5	Fourier Series and Laplace Transforms	4	5
Minor 6	Numerical Analysis	4	5

III. MULTIDISCIPLINARY COURSES *

SL. No	Title	Credits	No. Hrs of Teaching
1.	Natural Science	3	4
2.	Physical Sciences	3	4
3.	Humanities / Social Sciences	3	4

^{*}The common syllabus for MLDC courses is available on the University Website.

IV. ABILITY ENHANCEMENT COURSES *

a) English

SL. No	Title UG BOS may choose one course for the given UG Degree	Credits	No. Hrs. of Teaching
1.	English Language & Literature	2	4
2.	Functional English	2	4
3.	Spoken English	2	4

b) Indian Language

SL. No	Title	Credits	No. Hrs of Teaching
1.	Literature & Language	2	4
2.	Functional English	2	4
3.	Spoken English	2	4

^{*} All UG courses will have 4 credits of English and 4 credits of Indian Language

V . SKILL ENHANCEMENT COURSES

SL. No	Title of the Skill/Vocational courses	Credits	No. Hrs. of Teaching
1	Python Programming (Practical)	3	4
2	R-Programming (Practical)	3	4
3	Latex (Practical)	3	4

BOS identifies courses suitable to the students from Skill India courses offered by MOOCs/SWAYAM courses/Any other approved list of 3rd party certificate courses sponsored by Industry, GOI at special apprenticeship courses designed by any polytechnic college, Govt. MSME Training centers, BOS may also consider any other skill programmes that other Departments of the given institution. These may include skill training in computer programming and other emerging technologies.

VI. VALUE-ADDED COMMON COURSES

SL. No	Title	Credits	No. Hrs. of Teaching
1.	Understanding India (1)	2	4
2.	Environmental Sciences/ Education (2)	2	4
3.	Health & Wellness / Yoga Education (3)	2	4
4.	Digital Technology Education (4)	2	4

A common course structure and syllabus shall be prepared by:

Dean, School of Social Sciences for subject 1

Dean, School of Life Sciences for subject 2

Director, Directorate of Sports & Physical Education for subject 3

Dean, School of Computer Science for subject 4

FIRST-YEAR

SEMESTER I

Course Code	Type of Course	Credits	Hours	Title of the Course
MJD-I	Major Course 1	4	5	Calculus
MID-I	Minor Course 1	4	5	Foundations of Data Science-I/ Electives offered by other departments
MLDC-I	Multi-Disciplinary Course 1	3	4	Natural Sciences
AEC-I	Ability Enhancement Course 1	2	4	English-1 or Indian Language - 1
SEC-I	Skill Enhancement Course 1	3	4	Python Programming (Practical)
VAC-I	Value-added Course 1	2	4	Understanding India (Theory/Field-based)
VAC-II	Value-added Course 2	2	4	Environmental Sciences/ Education
Total Courses/ Credits/ Hours	7 Courses	20	30	

SEMESTER II

Course Code	Type of Course	Credits	Hours	Title of the Course
MJD-II	Major Course 2	4	5	Matrices and Theory of Equations
MID-II	Minor Course 2	4	5	Foundations of Data Science-II/ Electives offered by other departments
MLDC-II	Multi-Disciplinary Course 2	3	4	Physical Sciences
AEC-II	Ability Enhancement Course 2	2	4	English-1 or Indian Language - 1
SEC-II	Skill Enhancement Course 2	3	4	R- Programming (Practical)
VAC-III	Value-added Course 3	2	4	Health, Wellness, Yoga Education, Sports & Fitness
VAC-IV	Value-added Course 4	2	4	Digital Technology Education
Total Courses/ Credits/	7 Courses	20	30	

SECOND YEAR

SEMESTER III

Course Code	Type of Course	Credits	Hours	Title of the Course
MJD-III	Major Course 3	4	5*	Real Analysis - I
MJD-IV	Major Course 4	4	5*	Optimizations Techniques
MID-III	Minor Course 3	4	4+2	Exploratory Data Analysis (Practical)/ Electives offered by other departments
MLDC-III	Multi-Disciplinary Course 3	3	4	Humanities/ Social Sciences
AEC-III	Ability Enhancement Course 3	2	4	English-2 or Indian Language - 2
SEC-III	Skill Enhancement Course 3	3	4	Latex (Practical)
Total Courses/ Credits/ Hours	6 Courses	20	28	

^{*}Tutorial hours of one hour can be added to problem-oriented papers as per the available free hours

SEMESTER IV

Course Code	Type of Course	Credits	Hours	Title of the Course
MJD-V	Major Course 5	4	5	Real Analysis - II
MJD-VI	Major Course 6	4	5	Group Theory
MJD-VII	Major Course 7	4	5	Elements of Differential Equations
MID-IV	Minor Course 4	4	5	Data Wrangling with R (Practical)/ Electives offered by other departments
AEC-IV	Ability Enhancement Course 4	2	4	English-2 or Indian Language - 2
VAC-V	Value Added Course	2	6	Community Engagement and Service
Total Courses/ Credits/ Hours	6 Courses	20	30	

THIRD YEAR

SEMESTER V

Course Code	Type of Course	Credits	Hours	Title of the Course
MJD-VIII	Major Course 8	4	4+2	Computational Mathematics (Practical)
MJD-IX	Major Course 9	4	5*	Ring Theory
MJD-X	Major Course 10	4	5*	Complex Analysis- I
MID-V	Minor Course 5	4	5*	Probability and Statistics/ Electives offered by other departments
SEC	Skill Enhancement Course	4	6	Summer Internship for 45 days
Total Courses/ Credits/ Hours	5 Courses	20	27	

^{*}Tutorial hours of one hour can be added to problem-oriented papers as per the available free hours

SEMESTER VI

Course Code	Type of Course	Credits	Hours	Title of the Course
MJD-XI	Major Course 11	4	5*	Graph Theory
MJD-XII	Major Course 12	4	5*	Introduction to Linear Algebra
MJD-XIII	Major Course 13	4	5*	Complex Analysis- II
MJD-XIV	Major Course 14	4	4+2	Numerical Methods (Practical)
MID-VI	Minor Course 6	4	4+2	Interactive Data Visualization (Practical)/ Electives offered by other departments
Total Courses/ Credits/ Hours	5 Courses	20	27	

^{*}Tutorial hours of one hour can be added to problem-oriented papers as per the available free hour

FOURTH YEAR

SEMESTER VII

Course Code	Type of Course	Credits	Hours	Title of the Course
MJD-XV	Major Course 15	4	5*	Advanced Algebra
MJD-XVI	Major Course 16	4	5*	Topology
MJD-XVII	Major Course 17	4	5*	Advanced Real Analysis-I
MID-VII	Minor Course 7	4	5*	Calculus of Variations
MID-VIII	Minor Course 8	4	5*	Differential equations and special functions
Total Courses/ Credits/ Hours	5 Courses	20	25	

^{*}Tutorial hours of one hour can be added to problem-oriented papers as per the available free hours

SEMESTER VIII

Course Code	Type of Course	Credits	Hours	Title of the Course
MJD-XVIII	Major Course 18	4	5*	Advanced Real Analysis -II
MJD-XIX	Major Course 19	4	5*	Advanced Linear Algebra
		12	15	Research Project / Dissertation
MJD-XX	Major Course 20	4	5*	1. Differential Geometry
MJD-XXI	Major Course 21	4	5*	Number TheoryDiscrete Dynamical Systems
MJD- XXII	Major Course 22	4	5*	4. Numerical Analysis for Ordinary
				Differential Equations 5. Lattice Theory
				6. Integral Transforms and Their Applications
				7. Integral Equations
				8. Partial Differential Equations
				Note:- Students shall choose any of the above three
				courses from (1) to (8) if they do not choose
				the Research Project/ Dissertation.
Total Courses/ Credits/ Hours	5 Courses	20	25	

^{*}Tutorial hours of one hour can be added to problem-oriented papers as per the available free hours

^{*}Free hours apart from Major courses can be utilized for research projects and Dissertations.

LIST OF MINOR COURSES (ELECTIVES/ALLIED/SPECIALISATION)

These courses are designed for students from Physics, Chemistry, Biology, Computer Science, B.Com (General), B.Com (CS), etc. These courses will be floated depending on the number of students registering and the availability of the faculty. The number of students may be restricted depending on the available classroom facility and first-cum-first serve basis.

a) With Minor Stream I (within the Department and other disciplines)

Course Code	Type of Course	Credits	Hours	Title of the Course
MID-I	Minor Course 1	4	5	Foundations of Data Science-I
MID-II	Minor Course 2	4	5	Foundations of Data Science II
MID-III	Minor Course 3	4	5	Exploratory Data Analysis (Practical)
MID-IV	Minor Course 4	4	5	Data Wrangling with R (Practical)
MID-V	Minor Course 5	4	5	Probability and Statistics
MID-VI	Minor Course 6	4	5	Interactive Data Visualization (Practical)
MID-VII	Minor Course 7	4	5	Calculus of Variations
MID-VIII	Minor Course 8	4	5	Differential Equations and Special Functions

b) With Minor Stream II (Stream II is designated for students from Arts, commerce and Humanities)

Course Code	Type of Course	Credits	Hours	Title of the Course
MID-I	Minor Course 1	4	5	Computational Skills
MID-II	Minor Course 2	4	5	Business Statistics
MID-III	Minor Course 3	4	5	Numerical Analysis
MID-IV	Minor Course 4	4	5	Optimization Techniques-I
MID-V	Minor Course 5	4	5	Optimization Techniques-II
MID-VI	Minor Course 6	4	5	Applied Statistics

c) With Minor Stream III

> Minor Stream III is tailored for students pursuing B.Sc. in Physics, Chemistry, and other science courses(Other than Mathematics).

Course Code	Type of Course	Credits	Hours	Title of the Course
MID-I	Minor Course 1	4	5	Matrices and Trigonometry
MID-II	Minor Course 2	4	5	Calculus
MID-III	Minor Course 3	4	5	Vector Calculus
MID-IV	Minor Course 4	4	5	Introduction to Differential Equations
MID-V	Minor Course 5	4	5	Fourier Series and Laplace Transforms
MID-VI	Minor Course 6	4	5	Numerical Analysis

Skill Enhancement Courses

Course Code	Offered in the Semester	NEP Classification	Credits	Hours	Title of the Course
SEC-I	Ι	Skill Enhancement Course 1	3	4	Python Programming (Practical)
SEC-II	II	Skill Enhancement Course 2	3	4	R-Programming (Practical)
SEC-III	III	Skill Enhancement Course 3	3	5	Latex (Practical)

Multi-Disciplinary Course for all Arts, Commerce, and Science students (Except Mathematics)

Course Code	Offered in the Semester	NEP Classification	Credits	Hours	Title of the Course
MLDC-II	II	Multi Disciplinary Course 2	3	4	Basic Mathematics

LIST OF MAJOR COURSES (SINGLE MAJOR)

Ti	itle of cour		CA	LCULU	J S	Nature of the Course	Major-1	Subject Code	MTDS	MA01		
	edits	4	Semester	1	Type of course	Theory		Hours of ching	7	75		
Int	terna	l Asses (I <i>A</i>	sment Marks	25 I	End Semester 1 (ESI		75 E	Ouration of	f ESE	3 hrs		
Cou	rse P		,	Basic pr	oblem solving	skills	<u> </u>					
		1	_41114	_ 4:	Course Ou		1 T -:1.		1. 4	C 1		
CO			standard results order derivativ						nuia to	ma		
higher-order derivatives and solve equations involving derivatives. Compute total differential coefficients, apply Euler's theorem for homogeneous												
CO2 functions, and analyze maxima and minima of functions of two variables using												
Lagrange's method of undetermined multipliers.												
	J	Jnders	tand and calcu	late the	radius and c	enter of curv	ature of a	circle, de	rive the	e		
CO	Understand and calculate the radius and center of curvature of a circle, derive the Co3 Cartesian formula for the radius of curvature, and determine the envelope of a family of curvature.											
		urves.										
CO	4	_	problems involv	_	_			_		tions		
	a		monstrate a cle									
CO	•		egration by par									
	11	ntegra	ls, and compute	e doubl			artesian c	oordinate				
Uni	t No				Course Cont				No. of	Hours		
		nth 1	amizzativza Star		eory Compone			tion E	·····			
1	1		erivative – Star quations involv		_			ation – rc	ormanoi	15		
		Tota	l differential o	coeffici	ents – Eulei	r's theorem	Partial	derivativ	es of a	a		
	2		tion of two fun			d Minima of	two varial	bles – Lag	grange'	s 15		
			od of undetern									
3	3		le, radius and co	entre of	curvature – C	Cartesian for	mula for r	adius of c	urvatur	e 15		
	-	+	velope									
4	1	_	gration of ratio	_		_	ation of ir	rational a	lgebrai	2 15		
			tions - Properti					Б 1	. •			
4	5	_	gration by parts			,				^f 15		
		aoub	ole integral (Ca	rtesian	• • • • • • • • • • • • • • • • • • • •	Triple integi	rai (Cartes	sian form	only)			
	Calc	ulus V	olume- I, T. K. M	anickaw			uhlishers (1	May1992 F	dition)			
1			apter 3 - 1.1, 1.2,							1, 5		
	Unit	3: Cha	pter 10 - 1.1, 1.2,	2.1, 2.2	, 2.3, 2.4, 2.5					-		
2			olume II, S. Nara					4				
	Unit	4 : Cha	apter 1: 7.3, 7.4,	7.5, 8, 1		Chapter 1: 12,13	3,14, 15.1, a	and Chapte	r 5: 2, 4,			
	T4	1 (2. 1	1 N. D. D. 11	T 'F	Books for R							
1			culus, N. P. Bali,				-					
3			e), Lipman Bers a llculus 12th Editio		•			Hass Pears	on Edu	2015		
3	1 11011	ias Ca	neurus 12ul Eulli	лі, СС ОІ	ge D. Hollias, I	viaulice D. W C	11 4114 3001 1	11433, 1 Cal S	on Lau,	2013.		

	le of		MATRI	CES ANI EQUAT		EORY OF	Nature of the Course	Maj	or 2	Subject Code	MTE	SMA02
Cred	lits	4	Semest	er	2	Type of course	Theory		. of He Teach	ours of ning		75
Inte	ernal		ssment Marl A)	KS 25	En	d Semester 1 (ESI	Examination E)	75	Du	ration of	ESE	3 hrs
Coı	urse		quisites if		ns ar	ould have b	asic knowledg Familiarity with		_			-
	1					Course Ou						
CO1			stand the ba aneous equa		cepts	of matrice	s, including in	nner p	roduc	et, rank, a	ind so	lving
CO2		-	re eigenvalu ton theorem				milar matrice	s, and	appl	y the Cay	ley-	
CO3	A	naly	ze the theor	y of equ	atio	ns, includin	g the remaind				s betv	veen
CO4	A	pply		rule of s	signs	s, Rolle's the	eorem, and St				solve	
CO5	S	olve		iquadrat	ic e	quations usi	ing methods l	ike Ca	ırdan	o's metho	od, the	
Unit		gon		inou, am	J 110	Course Cor					No o	of Hours
Onit	110				The		ent (75 Hours)				110. 0	or mours
1			rices–Introdations – Rai		- I	nner produ	ict - Solutio	n of	simu	ltaneous		15
2		Sys	tem of non-	homoge	neoı	ıs linear equ	uations - Eige amilton Theo		ues ar	nd Eigen		15
3		The bety the	ory of equa	ntions – ots and control of the	Intro oeff pow	oduction – icients of eduction of the i	Remainder the quations – syncots of an economic contract of an economic contract contract the contract of the contract c	neoren mmetr	ic fur	nction of		15
4		Des		e of sign	ns –	Rolles' the	orem – Multi	ple ro	ots –	Strums'		15
5		Nev the	vton's meth	od of di tions –	iviso Caro	or – Horner don's meth	's Method – od – Trigono					15
		•	•			Prescribe					•	
1 F	Publis	shers)	avachagom Pi Pvt Ltd. (2011) ion 1,2,3,4,5,6)			napathy, Algebra on 16)	. Volum	ne II,	S. Viswana	than(Pr	rinters &
1	ΓК	Manic		llay, T N			napathy, Algebra	a Volur	ne I, S	S. Viswana	than(Pr	rinters &
Į	Jnit I	II: (Se	ctions 1-14),	Unit IV: (s	sectio		it V: (29,30,34,35	5)				
1 T) D 17	Gitto 1 3	/ Molini Alaa	hro Anolis	tical 4	Books for R		[anaha:	Dul-1:	antions		
							Trigonometry, M., Wiley Publicati		ı Publi	cations		
<u> </u>	J1 VV 11.	incys	zig, riavanece	Liigilicci	111 <u>5</u> 1V	auticinatics, 90	, which i dolled	1011.				

Title cou	of the	RE	CAL ANA	ALY	SIS-I	Nature of the Course	Majo	or-3	Subject Code	MTD	SMA03
Credits		Semest		3	Type of course	Theory		. of H Teacl	ours of ning		75
Intern	al Asses (L	ssment Mark A)	25	E	nd Semester 1 (ESI		75	Du	ration of l	ESE	3 hrs
Course					ould have basic	knowledge of					numbers.
any			Familiai	ity v	with limits, coi Course O	ntinuity, and el	ementa	ry alg	ebra 1s esse	ential.	
	Unders	stand the fir	ndamen	tal o		sets, set opera	ations	func	tions ear	iivalei	nce
CO1	relation		ility, and			eal numbers					
CO2	Analyz	ze sequence	s and su		-	luding their lent sequences			_		
		-	-		auchy seque	-	, 41011	B	n concep.	01 11	
CO2						of series, incl	luding	serie	s with no	n-neg	ative
CO3	terms,	alternating	series, c	onc	litional and a	absolute conv	ergen	ce			
CO4						al line and me	_			elop a	deep
CO4				_		c spaces thro					
CO5		_	-		•	inctions at a p	point c	on the	e real line	and in	n metric
**************************************	1	, study oper	n and clo	osec						**	0 T T
Unit No)			TL	Course Con		`			No.	of Hours
	Sets	and elemen	nts - One			ent (75 Hours) - Functions -		value	.d		
1			_			Real number					15
_		atest lower			ountaointy	rear manneer	о чрр	01 00	ana		20
				and	subsequenc	e - Limit of a	a seque	ence ·			
2			-		-	nce Monoton	-				15
2	Ope	ration on co	onvergei	nt se	equence-Lim	nit superior a	nd lim	it inf	erior-		13
		chy sequen									
3		_		_		ith non-nega					15
						ence and abs					
4						etric spaces (Exam	ples 4	and 5		15
					Limits in met	tric spaces. real line -Fur	octions	conf	inliolic		
5				-	ts, Closed So		ictions	COIII	illuous		15
	011 4	The span	оре	50	Prescribe					<u> </u>	
					s in Richard I	R. Goldberg(19					
						2(Sections 2.1				2.9),	
Unit	_	oter 3(Sections oter 5(sections				: Chapter 4(sec	tions 4.	.1, 4.2	, 4.3), and		
Omi	. J .Chap	out of sections		υ.⁻τ <u>,</u>	Books for F	Reference					
		se in Mathem	natical Ar	alys		ndaram & B Ch	noudhyı	ri-Nar	osa Publisł	ning ho	ouse New
Delr		40 C-1 1			V-11 D: 1 1	Cause 1 F		0	.i., 1000	`	
						Courant and Fartle and Dona					
J muc	Jauchon	to Real / Mai	7 210, T L	Jarti	on, Robert G.L	Janua and Done	IV.DI		c, 11110y 20	± 1+	

Title cou	of th	e			ZAT				are of the Course	Major 4	Subject Code	MTD	SMA04				
Credit		1	Semest	er		3	Typ cou		Theory		Hours of ching	75					
Intern	ıal A	ssess (IA	sment Marl)	KS	25			d Seme ination	ster (ESE)	75	Duration of	f ESE	3 hrs				
Course any	Prer	equi	sites if	Bas	ic ma	athe	matical a	and pro	blem-solving	g skills							
	Course Outcomes																
CO1 Understand and comprehend the basics of Linear Programming Problems (LPP).																	
CO2 Learn LPP-solving methods and explore duality in LPP.																	
CO3 Solve assignment problem and its variants																	
CO4																	
CO5	Per	form	n critical p	ath a	ınaly	sis	and rev	view o	f a project	•		ı					
Unit No	0						Cours	e Cont	ent			No. o	of Hours				
									t (75 Hours			T					
		-									-						
1	Operation Research – Definition – Characteristics – Techniques – Applications. LPP – Introduction – Applications and components of LPP – Steps in solving LPP											15					
	_							1 ' 1	41 1	C' 1	.1 1						
							_	_		_	method –						
2						_			-		egeneracy elationship		15				
			een primal				_		– Formu	iation – Ko	ranonsinp						
									n Method	l – Varia	nts of the						
3			gnment pro			1011	5 110	inguire	iii ivictiioc	v arra	nts of the		15				
4						on	– Findi	ng bas	sic feasible	solutions	- NWCR,		15				
4									IODI meth				15				
	I	ntro	duction –	Bas	sic c	om	ponents	s - L	ogical seq	uencing -	Rules of						
	n	etwo	ork constr	uctio	n –	Co	ncurren	t Acti	vities – Cr	itical Path	Analysis -						
5			-				_				Technique		15				
	`		,							Analysis	of PERT						
	n	etwo	ork – Prob	abili	ity o	f co											
1 17	t. C		D.V. C	4. 3.4	· 1. 4	r ₋ 1		cribed		L C1 1 1	2 0 204	D 454	2022				
1 Kan	nti Sv	waruj	p, P.K. Gup	ta, M	an M	lona				itan Chand d	& Sons, 20th	Edition	1, 2023.				
2 Tal	na H	A (nerations R	esea	rch· 4	\n I			<mark>ference</mark> arson Educa	tion 10 th Ed	lition 2019						
= 1 a1	14 II.	1 1., C	Peranons I	Lobou.	. VII. I	TII I	moduci	1011, 1 0	arson Lauca	1011, 10 10	2017.						

Title	e of		REA	L AN	AL	YSI	S-II		ture of the Course	Major	·-5	Subject Code	MTDS	SMA05				
Credi		4	Semest	er		2		e of irse	Theory			ours of hing	7	75				
Inter	nal		ssment Mar A)		25			(ESE	,	75		Ouration of						
Cours	se P	rere	quisites if	conti	nui	ty, a	nd diffenctions i	rentiati s also e	ndational unde on. Familiarity ssential. utcomes									
CO1	ı		stand oper spaces.	n, con	nec	cted			nd totally bo	ounded s	sets	, and expl	ore coi	nplete				
CO2		•	ze compac erse functi		ric	spa	ces and	l study	continuous	function	ns, i	ncluding t	he con	tinuity				
CO3	pr	ope	ties.						nd the Rier									
CO4	-		concepts mental Th						theorem,	the Lav	v o	of the Me	ean, ar	nd the				
CO5		-	re hyperbons, and Ta				_	onent	ial and log	arithmic	c fu	inctions, 1	trigono	metric				
Unit N	No						Cou	rse Con	tent				No. of	Hours				
	1								ent (75 Hours)				1					
1		bou	nded sets -	- Com	nple	ete 1	metric	spaces					1	15				
2			npact metr ontinuity o	-					ections on co	mpact n	netr	ic Spaces	1	15				
3			s of measu mann integ		ro	- D	efinitio	on of 1	the Riemani	n- Prope	ertie	es of the	1	15				
4			rivatives - orem of Ca			thec	orem -	The L	aw of the N	Mean -]	Fun	damental	1	15				
5		fun					-		ial function			_	1	15				
								rescrib										
			-				nit 3: 7.1	, 7.2, an	ldberg, (1970). d 7.4, Unit 4:	7.5 to 7.8	8, I	Jnit 5: 8.1 to	o 8.5					
			in Mathemati s- byShanti N			is by			e Books am & B Choud	hyri- Narc	osa P	ublishing ho	ouse New	Dehli				

	of the irse	e GROUP THEORY			Nature of t	he Course	Major 6	Subject Code	MTD	SMA06	
Credits	4	Semester		4	Type of course	Theory	No	o. of Hours of Teaching	75		
Internal Assessment Marks (IA)			25]	End Semester E (ESE		75	Duration o	f ESE	3 hrs	
Course any	Basic mathematical and problem-solving skills										
1					Course C						
	Understand the definition, examples, and elementary properties of groups, and analyze subgroups using subgroup tests.										
	Explore cyclic groups, their properties, and the classification of their subgroups, along with the structure and properties of permutation groups using cycle notation.										
CO3]	nvestiga	te group is	omor	phi	isms, Cayley's	s theorem, au			ies of	cosets,	
CO4	and Lagrange's theorem with its consequences. Analyze external and internal direct products, study the group of units modulo n, and understand normal subgroups, factor groups, and their applications.										
CO5]	Examine group homomorphisms, their properties, and the first isomorphism theorem, and explore the fundamental theorem of finite abelian groups and their isomorphism classes.										
Unit No									No. of Hours		
					Theory Compo)		1 - 1 - 1		
1	Introduction to Groups - Definition and Examples of Groups - Elementary Properties of Groups - Subgroups - Subgroup Tests - Examples of Subgroups.										
2	Cyclic Groups - Properties of Cyclic Groups - Classification of Subgroups of Cyclic Groups - Permutation Groups - Cycle Notation - Properties of Permutations.										
3	Isomorphisms - Cayley's Theorem - Properties of Isomorphisms - Automorphisms - Properties of Cosets - Lagrange's Theorem and Consequences.										
4	Extern Group	al Direct F	Mod	ulc	- Properties on as an Exps - Application	ternal Direc				15	
5	Subgroups - Factor Groups - Applications of Factor Group Homomorphisms - Properties of Homomorphisms - The First Isomorphism Theorem - Fundamental Theorem of Finite Abelian Groups (without proof) - The Isomorphism Classes of Abelian Groups.										
	n A. Gallianter 2 to Ch		ary Abs	strac	Prescrib	ition, Cengage I	Learning Inc	lia Private Limito	ed		
		a, Prentice-Ha			Books for , 1991 astern Ltd., New						

Title cou		ELEMEN	NTS OF DIFFERENTIAL EQUATIONS			Nature of the Course	Major 7 Subject			MTDSMA07		
Credits		Semest	_	4	Type of course	Theory		. of H Teacl	ours of		75	
Intern	al Asses (L	ssment Marl	25	E	nd Semester (ES	Examination E)	75	Du	ration of	ESE	3 hrs	
Course any		,	Basic m	ather	`	oblem-solving	skills					
					Course Ou	tcomes						
CO1	To solve	e a system of	first-ord	er OI	DEs							
CO2						using Different	ial Equ	ations	and their s	solutio	ns	
CO3					ential Equatio							
CO4						fferential equat						
CO5	To enab	ole students to	o understa	and so		t and second-or	rder OI	DES aı	nd first-ord			
Unit No					Course Cont					No.	of Hours	
					eory Compone					1		
1	Exact differential equations- Integrating factors — Linear differential equations- Bernoulli equation — Modeling: Electric circuits — Orthogonal trajectories of curves.									15		
2	Homogeneous linear equations of second order — Second order homogeneous equations with constant coefficients — Case of complex roots— Complex exponential function — Differential operators Modeling:- Free oscillations — Euler-Cauchy equation — Existence and uniqueness theory — Wronskian.										15	
3	Non-homogeneous equations – Solution by undetermined coefficients – Solution by variation of parameters – Modeling of electric circuits – Higher order linear differential equations – Higher order homogeneous equations with constant coefficients									15		
4	equations with constant coefficients. Introduction: vectors, matrices, eigenvalues – Introductory examples – Basic concepts and theory –Homogeneous systems with constant coefficients, phase plane, critical points – Criteria for critical points,									15		
5	Stability. Non-linear first order PDEs: Compatible systems- Solutions of Quasi linear equations Charpit's method- Special Types of Charpits Method, - Integral surfaces through a given curve-The Cauchy problem for Quasi Linear case and nonlinear first order PDEs									15		
					Prescribe					I.		
						h Edition, John V						
1 Uni 3.0-		ons 1.5-1.8; U	nit-II: Sec	tions	2.1-2.7; Unit-I	II: Sections 2.8-2	2.10, 2.1	12, 2.13	3, 2.14; Uni	t-IV: S	ections	
, K. S	Shankara		tion to Par	tial D	oifferential Equ	ations, PHI Publ	ications	s, 3rd E	Edition. 201	1.		
Uni	t V – Cha	ipier 0			Books for R	eference						
1 Geo	rge F. Sim	nmons, Differen	<u>itial Eq</u> uation	ons, T		l, New Delhi, 197	2					
2 Boy	ce and Di	Prima, Differer	ntial Equati	ons an	d Boundary Val	ue Problems, Wile	y,10th e				_	
3 Earl	A. Coddi	ngton, An Intro	duction to	Ordina	ry Differential I	Equations, Prentice	Hall of	India P	Private Ltd, 1	991.		

Title of the course			MPUTA EMATION		ONAL (Practical)	Nature of the Course	Maj	or 8	Subject Code	MTDSMA08		
Cr	edits	4	- 100		5	Type of course	Practical Teach			of Hours of eaching		75
In	iterna	al Assess (IA	sment Mark	s 50	F		Examination 50 Duration of			ESE	3 hrs	
Cou	(IA) (ESE) Duration of Tourse Prerequisites, if 1. Basic mathematical and problem-solving skills											
any			,			rogramming sk	ills					
	Course Outcomes Solve systems of linear equations using methods of Gaussian alimination											
CC			olve systems of linear equations using methods of Gaussian elimination									
CC	1	Demonstrate understanding of the concepts of vector space, linear independence, and basis.										ce, and
CC)3]	Determ	ine eigenv	alues an	d e	igenvectors a	and solve eig	envalı	ie pro	blems		
CC	14		strate unde		_		ruth tables ar	nd law	s of i	dentity, o	listrib	utive,
	(compute the	sum	of pr	oducts ar	nd pro	duct of
CC	ו כנ	_	pansions.		-	1	1		Г-		1	
Un	it No		•			Course Con	tent				No. o	of Hours
					Th	neory Compone	nt (45 Hours)					
	1	System of Linear Equation: Matrices, Determinants, Cramer's Rule,								9		
		Echelon form, Row reduction, Gaussian elimination method										
		Vector Spaces: Introduction to vector spaces, Some properties of vector									_	
	2	spaces, Linear combination, Linear independence, Linear dependence,										9
		Basis and Dimension of a vector space, Row space, Column space. Eigen values and Eigen vectors: Eigen values and Eigen vectors, The										
	3	chara	acteristic ed	quation,	Dia	agonalization	1.					9
	4	Boolean function: Relations, Types of Relations, Equivalence relations, Digraphs of relations, Matrix representation and Composition of Relations, Transitive closure and Warshall's Algorithm, Poset, Hasse diagram, Boolean Functions: Introduction, Boolean variable, Boolean Function of degree n, Boolean identities.									9	
	Boolean algebra: Definition of Boolean Algebra, Representation of Boolean Functions: Minterm, Maxterm Disjunctive normal form-Conjunctive normal Form.									9		
1	D., . 1	alors C			_		l Assessment m					
1							r Equation us	sing P	yınon		-	
2						tor Spaces us		•	D /1		-	30
3							Eigenvector		g Pytl	1011	-	30
5							using Pytho				-	
3	101	016111-2	orving on t	∪IIII 4: I	3 00	lean Algebra Prescribe	ı using Pytho d Text	11			<u> </u>	
1	How	ard Anto	on, Chris Rorr	es, Elemer	ntary		, Application Ve	ersion, l	Ninth E	Edition, Wile	ey	
2							oss, Rehman, Pre				•	
						Books for R						
1		K. Hoffman and R. Kunze, Linear Algebra, 2nd edition(2014), Prentice Hall of India, NewDelhi										
2	, , , , , , , , , , , , , , , , , , , ,											
3 *T							e number of exerc				nent	

^{*}The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

Title cou	of the	1	RING TH	IEO	ORY	Nature of the Course	Major 9	Subject Code	MTDSMA09		
Credit			course		Theory	No. of H Teac			75		
Intern		essment Mark [A]	25		End Semester Examination (ESE) 75 Duration of		uration of	ESE	ESE 3 hrs		
Course any	Prereq	uisites if			nary operations	et theory, functi s, properties of			-		
	1				Course Out						
CO1						examples, and istics of a ring		es of rin	gs, su	ıbrıngs,	
CO2	-			-	-	als, factor rin				l ideals,	
CO3	Explo	re polynom	ial ring	S, 8	apply the di	vision algori lucibility test	thm, and	study pr	rincipa		
CO4	Invest	igate unique	factoriz	zati	on in Z[x], di	visibility in ir	itegral dor	nains, and			
CO5	Exam domai	ine advance	d algebr	aic	structures lik	e unique fact significance t	orization o	domains a			
Unit No										No. of Hours	
	I				eory Compone				I		
	Intr	Introduction to Rings - Motivation and Definition of Rings - Examples									
1	of I	of Rings – Properties of Rings – Subrings - Definition and Examples of									
	Inte	Integral Domains – Fields - Characteristics of a Ring									
2	Exa	amples of	Ring	Н		Maximal Idea ms - Prop nts.		ition and of Ring		15	
3	Prin	-	domain	ı -]		lgorithm and of Polynom				15	
			•		x] - Weird I	Dice: An App	lication o	f Unique			
4	Fac	-			ty in Integral Domains – Irreducibles and						
5	Historical Discussion of Fermat's Last Theorem - Unique Factorization								15		
					Prescribed	l Text			<u> </u>		
	_	Gallian, Contem to Chapter 18	porary Ab	strac	et Algebra, 8th E	dition, Cengage	Learning Ind	ia Private L	imited.		
					Books for Re	eference					
		lgebra, Prentice				Delhi 1075					
					astern Ltd., New Abstract Algebra	a (Third Edition)	. John Wilev	and sons 2	004		
Du	D. D.		171. 1	,	1 10001400 1 1150010	(I IIII G LGIGIOII)	, , , , , , , , , , , , , , , , , , ,	50115, 2	J J I		

Title co	of t		COMP	PLEX AN	IAL'	YSIS-I		ature of Course	Major	10	Subject Code	MTDS	SMA10
Credit	S	4	Semest	er	5	Type of course		Theory	7		Hours of ching		75
Inter	nal	Assess (IA	sment Mark)	25		End Se Examinat	tion (ESE)	75		Duration of		3 hrs
Course any	Pro	erequi	sites if	calculus	. Fai	miliarity wi o understan	th fund cor	nctions, de	erivatives	, an	bra, trigonord properties ir application	of real n	
	D	emone	strate unde	erstandir	 1σ. c	Course of complex			ncluding	th.	eir definiti	ons al	gebraic
CO1	pr	operti		ian and _I	pola	ar represer			_		iality, pow		_
CO2	co	mple		-		•				-	y, and diff sufficient		
CO3			the applic monic fun								form to id	entify a	ınalytic
CO4	lo	garith		tions, in				-	_		metric, hy inverse f	-	
CO5	-					-	-		_		appings b sformation	•	nentary
Unit N	0					Course Co	onten	t				No. of	f Hours
		~	_	4		eory Compo		•			~ .		
1			plex notinates - Ton in the c	riangula	r in		_				Cartesian nd roots -	1	15
2		- Th	ytic function eorems of ula- Cauch	n limits	_	Continuit	y -	Derivati	ves -D	iffe	ng -Limit rentiation	1	15
3			hy Riema nonic func	-	atio	ns in pol	ar f	orm - A	Analytic	fu	nctions –	1	15
4		funct Branc	entary furions and ches - pronometric &	theirH	lype of l	erbolic fu ogarithms	nctio	ons–Log	arithmic	fi	ınction –	1	15
5		fracti	oing by eloonal transfessive tran	formatio	n-T	he function $W = z + 1/z$	on w	$=e^z, W=$				1	15
							own a UNIT	nd Ruel V TIII-chapte			Graw-Hill, hapter 3, UN		
			Complex va			Tyagi – Ked	larNa	th Ram Na		ers(]	P)Ltd		
3 S.F	onn	usamy	lysis by P. D , Foundations Narosa2005			•				Karı	ınakaran, Cor	mplex An	nalysis,

	le of ours		GRAI	H TH	EOR	RY		re of the ourse	Major	11	Subject Code	MTD	SMA11
Cred	lits	4	Semester	r	6	Typ cou	rse	Theory	, No	o. of Horizontal Teach	ours of ning		75
Intern	nal A	ssessm	nent Marks (l		25	Exami	d Seme ination	(ESE)	75		ration of l		3 hrs
Cours	se Pr	erequi	sites if any	Basic	unde				ations, fu	nction	s, and com	binator	rics.
CO1	is	omorpł	crate a strong nism, degrees raphs and tree	of ve		ing of fu		ntal concep					
CO2		•	and apply ad			-				-	•		derstand
CO3		_	oblems involvors, including	_		_			_	_	_		_
CO4	ap	ply Di	and determine rac's theorem	, and u	ise gr	aph closu	ire to st	udy the ex	istence of	Hami	ltonian cyc	eles.	- 1
CO5			vertex colori theorem, Vizi										
Unit N	No						e Conte					No. o	of Hours
		<u> </u>	1 0 1	1				t (75 Hours		CII			
1		Paths	hs – Subgra s and Conne ers and Cen	ctedn		-	_		_				15
2		Cuts	ting the Nu and Edge C	uts –	Con	nectivit	y and l	Edge-con	nectivity	у.			15
3		– Ma Grap	ex Independ tchings and hs – Halls T out proof).	Facto	rs –N	M Augn	nenting	g Paths –]	Matchin	gs in l	Bipartite		15
4		Euler	rian graphs - miltonian gr			•					n graphs		15
5		Verte Theo proof	ex Coloring rem – Edg f) – Planar equences.	g – C e Col	Chror oring	natic N	lumber raphs	r –Critic – Vizing	al Grap g's Theo	hs – orem	(without		15
	י ת נ	-1: 1	117 D		A 7		scribed '		T* *4	4) C	1 D 1'4'	C	N.
1 Y	ork 2	2012. Cl	an and K. Rang hapter 1: 1.1-1 .,7.2,7.3.1, 7.6.	6, Cha	pter 3	: 3.1-3.3,	_			-			
					`	Books	for Ref						
			nd Murthy, U.S										
2 D	Oougl	as B. W	est, Introduction	on to G	raph [Theory, So	econd E	dition, PHI	Learning l	Private	Ltd, New D	elhi-20	11.

T	itle of cours		INTROD	UCTION ALGEB		LINEAR		Nature of ne Course	Major	12	Subject Code	MTD	SMA12
Cro	edits	4	Semest		6	Type o	f	Theory			Hours of ching		75
		(I	ssment Marl A)	25		End S Examina	tion	(ESE)	75		ouration of		3 hrs
C	ourse !	Prere any	equisites if	Basic ki		-		es, determina	ants, set	theo	ory, and solv	ving sy	stems of
CO	ı li	near	rstand the fi dependence ems in linea	e/indepe	nde	concepts	of al	bstract algo				-	ces,
CO	2 ir	vert dvan	re linear tra ibility, isom ced linear a	orphism lgebraic	ıs, a strı	nd change octures.	e of	coordinate	matric	es to	o compreh	end	
CO	3 m	atric	rm elementa ees, and solv utational tec	e systen	ns c							e the r	ank of
CO	4		ate determin variant spac		-	=	_		_		_		_
CO	~		y inner prod k with orth	-							_	-	
Uni	it No					Course C						No. o	of Hours
	1	Vec equ	stract Algebetor space- Stations- Line	Subspace	epts e-lir	– Groups near comb	s- Su inat	ions and sy	ystems	of li	near		15
	2	Lin theo	ear Transformer Matri inear transformer tr	x repres ormation	enta is ai	ntion of lir nd Matrix	near mul	transforma tiplication	ation- c	omj	position		15
	3	Ele:	mentary ma rix and mat aputation	trix Ope	rati	ons and el	leme	entary mat					15
	4	Det Imp	erminants of ortant facts gonalizabili	about d	eter	minants-	Eige	en values a	nd Eige	en v	ectors-		15
	5		er products cess and ort			nplements	S		ogonal	izat	ion		15
1	_	td., 20	Friedberg, Arı 006, Unit I: 1.2			2.1 to 2.5, U	E. Sp Jnit I	ence, Linear J II: 3.1 to 3.4,	_				
1	S Ku	narec	an, Linear Alge	ehra Geom	etric	Approach I			dia Dut I	td ′	2000		
2			in, Topics in A							Ju., 2	2000.		
_	1 · · · 1		, 15p105 m /1	-01, 2		, 0 0 1111 11		~ 5110, 2003	-				

Т	itle of		COMPL	EX ANA	LY		Co	e of the urse	Major		Subject Code	MTE	OSMA13
	edits	4	Semest		6	Typ cou	rse	Theory	, No		Hours of ching		75
In	terna	l Asses (L	ssment Mark A)	25			l Semest nation (75	L	Ouration of	ESE	3 hrs
Cou		rerequ	isites if								. Familiarity rems in anal		
							rse Outco						
CO	, ,		stand and e ultiply conn				_		_				
CO)2 f	unctic	the Cauchy ons, and exp damental the	plore the	e in	nplication							-
CO)3 A	Analyz	ze the convious, and a	ergence	of	sequen			_		_		t series
CO)4 e		fy and analy te integrals, er m.	_		-	-						
CO	,		te integral	-				-	-	integ	grals invol	ving	rational
Uni	it No					Cours	e Conten	ıt				No. o	of Hours
					Th	eory Cor	mponent	(75 Hours	s)			1	
	1	preli	tour integr iminary len tiple connec	nma- Pr	oof	of Cau		•					15
	2	Mor	Cauchy i era's theor rem-The fu	rem -	Max	ximum	modu	li of fu	•				15
	3		vergence of nples–Laur	-				•	ies -Obs	serva	tions and		15
	4	_	gularities-D of a function				_						15
	5	Type Type	1: $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} dx$ 3: $\int_{0}^{2\pi} F(\sin \theta)$ no factor i	$(x, Type\ 2)$	$\int_{-\infty}^{\infty} d\theta, \mathbf{V}$	$\int_{0}^{\frac{p(x)}{q(x)}} \sin \alpha$ Where pand $q(x)$	ax dx (or o(x) and) has no	$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)}$ $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)}$ $\int_{-\infty}^{\infty} \frac{p(x)}{q(x)}$ or real zero	cos ax dx	C			15
1	Editio	on(1990	riables and Ap)) Unit I : Chap Chapter 6: Sec	oter 4:Sect	ion .	nes Ward 34-38, Un nit V: Ch	nit II: Cha apter 6: S	nd Ruel V apter 4 : Se section 58-	ection 39-				
1	Funct	tions of	a Complex va	riable by 1	B. S.		for Refe KedarNat		h Publish	ers(P)	Ltd.		
				•		_ · ·							

Complex Analysis by P. Duraipandian and Kayalal Pachaiappa –S.Chand & Co.

	of the urse	NUMER	RICAL M (Practic		ГНОDS	l l	ture of Course	Ma	ajor 14	1	Subject Code	MTDS	SMA14
Credit	ts 4	Semeste	er	6	Type cours		Practio	cal			lours of hing	,	75
Inter		ment Mark	s 50		End Seme	ster I		ion	50		oning Ouration of	ESE	3 hrs
	(IA	.)		ndo	rstanding o	(ESI		udina					
Course	Pre requ	isites if	with alg	ebr e di	a, linear equ fferences a gramming l	uation ind ba Langu	s, and dif sic comp age is als	ferent outation	ial equ onal te	atic chn	ons. Introdu iques. Kno	ctory kn wledge	owledge in using
CO1		numerical ewton-Rap ely.				secti	on, succ						
CO2		systems of tion, Gauss				_		-		•	-		Gauss
СО3	differen	finite d tiation and ation, Trap	d integr	rati	on using	met	hods su	ch a	s Ne				merical range's
CO4	interpolation, Trapezoidal rule, and Simpson's 1/3rd rule. Solve ordinary differential equations of first and second order using numerical methods like Taylor series, Picard's method, and Euler's methods, including their improved and modified forms.												
CO5	(second	e and im and fourth	h order)								_		
Unit No	0				Course (Conten	ıt					No. of	f Hours
1	Bolza	erical solu ano's bised la falsi me	ction m	f a	nod - Suc	and ccess	transce	nder roxir					9
2	Num elimi	erical solut nation met ion methoo	tion of s thod - G	im	ultaneous	linea	ar algebr	aic e	-				9
3	and baggaranter	e difference cackward is ange's interpolation for the case of the	nterpola erpolati ormula	atic on –	on – New formula Numeri	ton's for cal	divided unever differen	diff inintiatic	erenc terval on –	e fo	ormula – – Gauss		9
4	Num secor	erical solund order – d's method	itions o - Simul	f (Ordinary (diffe	rential e	quat	ions				9
5	– Ru	's method nge-Kutta ctor metho	method										9

Exercise No	Practical Component - Internal Assessment marks (IA)-50	No. of Hour
1	Write a program to solve algebraic and transcendental equations by the Bisection method using Python Programming Language.	
2	Write a program to solve algebraic equations and transcendental by the Newton-Raphson method using Python Programming Language.	
3	Write a program to solve simultaneous linear algebraic equations by Gauss Jordan method using Python Programming Language.	
4	Write a program to find the inverse of a matrix of order n using Python Programming Language.	
5	Write a program to find the determinant of a matrix of order n using Python Programming Language.	30
6	Write a program to solve simultaneous linear algebraic equations by Gauss Seidel using Python Programming Language.	30
7	Write a program to evaluate definite integral by Trapezoidal rule using Python programming Language.	
8	Write a program to evaluate definite integral by Simpson's 1/3 rule using Python programming Language.	
9	Write a program to solve first order ODE by Euler's method using Python programming Language.	
10	Write a program to solve the first order ODE by Runge Kutta method using Python programming Language.	
	Prescribed Text	
1 Unit	erical Method in Science and Engineering, M.K.Venkataraman, National Publication Co, Che 1: Chapter 3 and 4, Unit 2: Chapter 5, Unit 3: Chapter 6 and 9, Unit 4: Chapter 11(Relevant 5: Chapter 11(Relevant portions)	` /
1	Books for Reference	
1 Com	puter oriented Numerical Methods by V.Rajaram –PHI(P)Ltd.	

	of th urse	e	ADV	ANCED	ΑI	LGEBRA	Nature of the Course	Majo	or 15	Subject Code	MTD	SMA15
Credit	ts 4	1	Semest	er	7	Type of course	Theory		. of H Teacl	ours of ning		75
		(IA		25		End Semester I (ESI	Ε)	75		ration of l		3 hrs
Course any	Pre	requi	isites if			epts of group the y knowledge of Course Out	ring theory an				l cyclic	groups.
CO1						isomorphism	theorems a		•	e compo	sition	series,
CO2	-		•		-	ermutation re yley's theorer	-		_			by left
CO3	auto	omo	•		•	conjugation, ow theorems				-		•
CO4						rect products of groups to class	C 1	1 1	•		ental t	heorem
CO5	Der	nons	strate und	erstandi	ng	of polynomi pply irreducib	al rings, the	ir pro	pertie	es over f		-
Unit No	0					Course Cont					No. o	of Hours
						heory Compone		_				
1			somorphis nating gro		ren	ns -Composit	ion Series -	Trans	positi	ions and		15
2			•	_		ctions and Per eft multiplicat	-			s-Group		15
3						elves by con w theorems-				quation-		15
4					-	oducts and a of finitely ge			-	roducts-		15
5	P	olyr ver	nomial rin	gs: Def lynomia	ini	tions and basings that are	ic properties	- Poly	/nom	_		15
1.	. 1 ~	ъ		136 =		Prescribed		\ T 1	XX 7°1	1 -	20.4	
1 Ch		3 - Se	ections 3.3 to			, Abstract Algebr 4 - Sections 4.1 to	`		•			-
,				r 11 - 07 - 11		Books for Re	eference					
			ora, Prentice-H		_	991 tern Ltd., New Del	hi 1975					
						W. H. Freeman, 1						
			ra, 3rd edition,									

	of the	e	T	ОРО	LOC	ξY			ure of the Course	Major	16	Subject Code	MTD	SMA16
Credit	s 4	1	Semest	er		7	Typ cou	e of	Theory	No		Hours of ching		75
Inter	nal As	ssess (IA	sment Mark ()		25		Exam		ı (ESE)	75		Ouration of l		3 hrs
Course any	Pre r	equ	isites if				and real	analy	basic under vsis, includi		_	-		ctions,
CO1	To i	ntro	oduce the r	notio	n of	me		rse Oute	comes nd to chara	cterize	ope	n sets in th	e real	line
CO2	Tos	tud		ept o	f top				and to stud					
CO3							_		ss of topol	logical	spa	aces and t	o pro	ove the
CO4	Tychnoff's theorem with some applications To study bout the equivalent versions of compactness in metric space To discuss some important theorems like Urysohn's lemma and the													
CO5			cuss some n. Also, we	-					-	s lemm	ia ai	nd the Tiet	ze ex	tension
Unit No)							se Conte					No. o	of Hours
1	se sp	ets pace	– Uncount	able tion	sets and	tions –	ns - Pro Partial amples	duct o	of sets — Rolered sets a en sets and	nd latt	ices	– Metric		15
2	C	onc		en ba	ases	an	d open		examples - ases – Sep					15
3	C	har	acterizatio	n of	con	ıpa	ctness l	oy bas	nuous maps sic and sub ine – Bore	basic o	opei			15
4	C	ove	-	a - S	eque	enti	al comp	oactne	ential compaces	-		_		15
5		-		•	-		Connec	ted sp	spaces – U	•				15
1 G.	F.Simr	nons	s, an Introduct	tion to	о Тор	olog		e <mark>scribed</mark> odern A	nalysis, McG	raw-Hill	Koga	akusha, Tokyo	o, 1963	
<u>'</u>							Books	s for Re	ference			, , , , , , , , , , , , , , , , , , ,	•	
			Toplogy, Pear d, General Top						n, 2000.					
3 J. I	Ougund	gi, T	oplogy, Allyn	and B	acon,	Bost	ton, 1966.							
4 Fre	d.H. C	room	, Principles of	Topol	ogy, I	Dove	er publicat	ions, 20	16.					

	tle of cours		A	ADVANO ANAI			A L		re of the ourse	Major 1	17	Subject Code	MTE	OSMA17
Cred		4		mester		7	Typ- cou	rse	Theory		of H Feacl	ours of ning		75
Inte	ernal	Assess (IA	sment N ()	Marks	25		End Exami	Semes nation		75	D	Ouration of	ESE	3 hrs
Cour if any		e requ	isites	elemen	tary	calc	ulus is epts is al	require	d. Familia ected.			and series, nits, continu		
CO1	Е	xplain	the co	oncepts	of in	fim			n, and m	etric spa	ices			
CO2												arious tests	<u> </u>	
CO3									nuous fui					
CO4					-		-	-	sure of s		f va	rious metri	ic spac	ces, and
CO5				ctions th l differe				s comb	inations	of the pr	oper	ties contin	uity, ı	ıniform
Unit	No							e Conte					No.	of Hours
						Th	eory Cor	nponen	t (75 Hours	s)				
1		Theory Component (75 Hours) Finite, countable and uncountable sets - Metric spaces - Compact sets - Perfect sets - Connected sets - Convergent sequence - Subsequences - Cauchy sequences - Upper and lower limits - Some special sequences.												
2		ratio	tests -	Power	serie	s -	Summa	tion b		Absolute	e coi	root and nvergence series.		15
3		Limit	ts of actnes	functions - C	ons ontin	- nuit	Conting y and	uous conne	functions	s - Co - Disc	ontin cont	uity and inuities -		15
4		of de	rivativ	es - L'E	Iospi	ital'	s rule -	Deriva		nigher or		continuity - Taylor's		15
5		- Proj	perties ector- V	of the in	ntegr	al	- Integra is - Re	ation a ctifiab	nd differe le curves	entiation	- I1	ne integral ntegration Riemann		15
	Walter 2-6)	Rudin, I	Principles	s of Mathe	matica	l An	alysis- Mc		ll Internation	al Editions,	, Math	nematics series	, 1976 (Chapters
2 7 3 1	Γom A N.L.Ca	postol, N rothers,	Mathema Real Ana	tical Analy alysis, Car	sis, Na nbridg	arosa ge Ur	MS, Pure a Publishin niversity Pr	g House, ess, 200	ied Undergra Indian edition	on, 1985.		ian Edition,2nd	l edition	, 2009.
									MS Chelsea Publishing		, 2015			

T	itle of		A	ADVANC ANAL			A L		re of the course	Major 1	8	Subject Code	MTD	SMA18
Cr	edits	4	Sei	mester	101	8	Typ	e of	Theory		of Ho	ours of		75
In	terna	Assess (IA	sment N	Marks	25		End Exami	Seme		75	D	uration of l	ESE	3 hrs
Cou if aı		re requ	,	calculus	(difi	feren a (m	alysis (sentiation, natrices, t	equenco integra	es, series, a tion). Fami rmations).	iliarity wit	th mu	Fundament altivariable of of uniform	alculu	s and
CO	1		dy abo produ		tions	of				ouble se	eque	nce, doub	le ser	ies and
CO	2 T	`o stud	ly abou	it conve	rgen	ce o	of seque	ences	and series	of funct	tions	and their	prope	rties
CO	V	Veierst	trass th	eorem								ion theore		
CO	c	ontrac	tion m	apping t	heor	em	•					bles and		
CO		o prov	e the i	mportan	t the	ore				on and th	ne in	nplicit func		
Un	it No							e Conte					No. o	of Hours
		1_		2.1				_					1	
	Theory Component (75 Hours) Functions of bounded variation - Double sequences - Double series - Rearrangement theorem for double series- A sufficient condition for the equality of iterated series (Chapter:6 and Sections: 8.20 to 8.23, 8.26 and 8.27 of [2])													
	2	and conv limit	Continergences - Equ	nuity - e and Di nicontinu	Unit iffer ious	forn enti -F	n conve ation - l amilies	ergeno Doubl of F	ce and In	ntegration ees and sees — Arz	on - eries	vergence Uniform - Iterated - Ascoli		15
	3	The Weie Loga	Weier erstraus erithmi Weiers	strauss ss Theo c Functi trauss th	theo oren ons	ren 1- - Tl em	n for a Power ne Trigo for the	lgebra Serionome Trigor	aic polyn es - Tl	omials- ne Expe tions - Fo polynom	oner ourie iials.			15
	4	Func	tions o	f Severa	ıl Va	rial	oles - Li	inear T	Transform	nation - D	Diffe	rentiation 6 to 9.23)		15
	5	The Rank	inverse Theo		n Ti	heo nina	rem - T ints.	The im	nplicit Fu			rem - The		15
	***						Pre	scribed	Text		- .	3.5.4		125
1											Editio	ns, Mathemat	tics seri	es, 1976
2	Apos	oi, Matl	nematica	ıı Analysis	, Nar	osa l		g House s for Re	e, Indian edi	t10n,2002.				
1	Patric	M. Fitz	patrick A	dvanced C	alculu	s, Aı				lied Underg	gradua	te Texts, India	n Editio	n, 2009.
2	Kenne	th A. Ro	ss, Eleme	entary Anal	ysis, T	The T	Theory of C	Calculus	, Springer-Ve					•
3				nalysis, Car ction to Tor					00) McGraw Hi	11, 2017.				

	of the irse		NCED ALGEI		EAR	Nature of the Course	Majo	r 19	Subject Code	MTI	DSMA19			
Credits		Semest		8	Type cours	1 Heory			lours of hing		75			
Intern	al Asse: (L	ssment Mark A)	25	5		Semester nation (ESE)	75	D	ouration of	ESE	3 hrs			
Course	Prerequ	uisites if			-	near algebra (ved	-		_	values	s),			
any			abstrac	t alg	•	s, rings, modules), and qua	adrat	ic forms.					
	TT 1	. 1.1				se Outcomes	11 1	1	• 1	1	.1			
CO1		rstand the co a of linear t	-			ory, splitting fi	elds, alg	ebra	ic closures	s, and	the			
CO2	Analy	ze linear tra	nsform	atio	ns, invari	ant subspaces.	and rec	lucti	on to trian	gular	forms.			
CO3						ordan blocks, a				•				
CO4	Apply		ental t	neor	em on m	odules over PI					and			
CO5	-	re Hermitiantic forms.	n, unita	ry, a	and norm	al transformat	ions and	the	ir applicati	ons to	real			
Unit No					Course	Content				No.	of Hours			
				Tl	heory Com	ponent (75 Hours	s)							
1	line	Theory Component (75 Hours) Field theory: Splitting fields and Algebraic closures. The Algebra of linear transformations-Characteristic roots- Similarity of linear transformations. Sections – 6.1,6.2, 6.3 [1] and 13.1-13.2 [2]												
2	Inva		aces ar	d m		Reduction to tr			ns.		15			
3	nilp		ormatio	on. J		of nil poter ocks and Jorda	_		variant of		15			
4	Mod PID	dules - Cyc	lic mo	dule al fo	orm- Trac	lamental theoree- Transpose					15			
5	Her		tary ar	d N	ormal trai	nsformations -	Real qu	adra	tic forms.		15			
1 TAT	Hanat:	Tomica in Al	TT	:1 1		New Dalbi 1075	<u> </u>							
		· •				, New Delhi, 1975 nit and Richard M		ection	ns 13.1-13.2)					
		•	, -		Books 1	for Reference	, (-		- ')					
		ebra, Prentice-H				1000								
		Basic Algebra, V				nan, 1980.								
A P.B.		ebra, 3rd edition, arya, S.K. Jain a				stract Algebra (2 nd]	Edition)Car	nbridg	ge University P	ress, In	dian			
5 Ken	neth Hoff	fmann and Ray I ra, (4th Edition)			Algebra, (Sec	ond edition), Pearso	n, 20156.S	. Fried	lberg, A. Insel	and L. S	Spence,			

Title	of tl urse	ne	DIFFER	ENTI	AL	Gl	EOMETRY	Nature of the Course		ajor 21/22	Subject Code		DSMA /21/22
Credit		4	Semest	er		8	Type of course	Theory			ours of		75
Interi	nal A	Assess (IA	sment Mark		25		End Semester (ES	E)	75		ration of I		3 hrs
Course	Pre	requi	sites if				_	ıs, linear algebi			variable cal	lculus,	,
any				inclu	ding	g ci		and coordinate	geom	etry.			
	Та	1					Course Out		1	- 4 :	af a		f1
CO1		iear ves	п авош ра	arame	etric	; C	urves, level	curves, and t	ne no	ouon	or curvat	lure o	n plane
			1 41			f a		Counct From	.4			. fa	
CO2				perne	S O	1 S	space curves,	Serret Frence	et equ	iauon	is and the	lour	vertex
theorem CO3 To study surfaces, quadratic surfaces, triple orthogonal systems													
CO3 To study surfaces, quadratic surfaces, triple orthogonal systems CO4 To calculate the length of curves on surfaces and surface area													
CO5								re of curves of			e and Ful	er's tl	neorem
Unit No		Stud	ly the horn	iai aii	цρ	1 111	Course Cont		m a s	urrac	c and Lui		of Hours
CIII I I I						Tł	neory Compone					110.1	
1				_		epa	arameterization	on-Level cur Sections 2.1,2		Cur	vature -		15
2	,	Spac The	e curves-T	orsio ric In	n- S equ	Sei iali	rret Frenet ed	quations- Sim Vertex Theo	ple c				15
3	S	surfa	ces- Quad	ratic	sur	fac	•	nd orient abi thogonal syst 4.1 to 4.7]	•		-		15
4]	Leng surfa	ths of cur ces- Confo	ves or ormal	n sı ma	urf pp	aces- First for	undamental fees-Surface are					15
5	-	The S	Second Fundermal and	ndam d prin	ent ncip	al oal	form- The C curvature- I	urvature of co Euler's theore Sections: 6.1	em- T	he g			15
	1 -			1	Т	-	Prescribed						
1 An	drew	Press	sley, Elementa	ary Dif	fere	ntia	l Geometry, Spr						
1 0	.i.a.4:	D- 1	Elome t D'	ffor . · ·	1.0		Books for Ro		111				
								Iniversity Press, 20 etry of Curves and		es. A.K	Peters/CRC 1	press. 20	010.
								Verlag, New York,		-,			

Т	itle o		NUM	IBER TH	EC	ORY		ure of the Course	Majo 20/21/		Subject Code		DSMA 21/22
Cro	edits	4	Semest	er	8	Type cours		Theory			Hours of ching		75
In	terna	l Asses	sment Mark	KS 25		End Examin	Seme		75	D	uration of I	ESE	3 hrs
Cou	rse P		isites if	includin algebraic elementa	g d c te ary	e expected ivisibility, chniques, functions is also rec	to hat prime proof is ess	we basic known and cong methods (elential. A basended.	ruences specially	. Fa y ma	miliarity wit athematical i	th fund induction	lamental on), and
СО	ľ	propert	ies.					of divisibi					
CO	Solve linear and higher-degree congruences, including those with prime power reasonable. Analyze quadratic residues and apply the law of quadratic reciprocity and the												
CO	.5	Analyz symbol	-	c residue	es a	and apply	y the	law of qua	adratic	rec	iprocity an	d the	Jacobi
CO	inversion formula; understand the irrationality of certain numbers.												
CO			ent irrationies of spec				infi	nite contin	ued fi	ract	ions and	exami	ne the
Uni	it No					Course	Conte	nt				No. o	f Hours
		I					•	t (75 Hours)					
	1		sibility: Int										15
	2	Solumod		gruences	S —	Congrue	nces (of higher d	egree –	- prı	me power		15
	3						•	ity Law, Ja					15
	4							ons, Mobius ot of N, e, a		sion	Formula,		15
	5					nued frac	ction.	, representa Some spe					15
	Δn I	ntroduct	ion to the The	eory of Nu	mhe		ribed '	<u>Fext</u> I.S. Zuckerma	n and H	I. M	Iontgomery	New V	ork John
1	Wile	y and So	ons, Inc., 2004	, 5 th Ed.		. •							JIK, JUIII
1	Unit	I Section	n :1.1-1.3, U	nit II Secti	ion :	:2.1-2.11, U	Init III	Section:3.1-3	.3, Unit	IV S	ection:4.1-4.3	,	
	Unit	V Section	on :5.6-5.11										
	тм	Ancatal	Introduction	en to Anoly	rtic 1	Books f		erence Narosa Publish	ing Uay	IGO N	Javy Dalhi		
1		•										1070 4	th D.A
2	G.H. Hardy and E.M. Wright- An Introduction to the Theory of Numbers, Oxford University Press, 1979, 5th Ed.												

T	itle of		DISC	CRETE D'		AMICAL S	Nature of the Course	Majo 20/21			TDSMA 0/21/22
Cr	edits	4	Semest	er	8	Type of course	Theory		of Hours of Teaching		75
In	ternal	l Asses (L	ssment Marl A)	25		End Semester 1 (ESI		75	Duration of I	ESE	3 hrs
Cou any	irse Pi	rerequ	isites if	Basic kı	iow	_		equatio	ns, and linear alg	gebra	
						Course Out					
СО	11 .	Jnders neore		oncepts o	of o	orbits, phase p	ortraits, peri	iodic p	oints, and Sarl	kovsk	ii's
СО	12	-	ze attracting c map.	g and rep	pel]	ling periodic j	points, differ	entiab	ility, bifurcation	ns, a	nd the
CO	3 E	Explai	n symbolic	dynami	cs,	Devaney's de	efinition of c	haos, a	and topologica	l con	ugacy.
CO						•			tial equations.	<i>_</i>	
СО	5 E								mily, and the N	Mande	elbrot
Uni	it No					Course Con	tent			No.	of Hours
		1			T	heory Compone	nt (75 Hours)			1	
	1	Orb		portrait				e sets.	Sarkovskii's		15
	2	Attr imp	acting and	-	_				oility and its reations- The		15
	3		bolic dyna jugacy.	amics -	Do	evaney's defi	nition of C	haos -	Topological		15
	4	New	ton's meth	od-Num	eri	ical solutions	of differentia	al equa	itions.		15
The dynamics of Complex functions- The quadratic family and the Mandelbrot set.											15
		•				Prescribed	l Text			•	
1	Unit-l	[Chap	•	d 5], Unit	-II [ļ	d 8], Unit-III [C	_	Yerlag (1994). 9, 10 and 11], Un	it-IV [(Chapters:
	D c 1	4 I D -	romar A Eine	Correction	C1:	Books for Ro		on W/1	ov Dublishin - Com		Inc
1	1992.		vaney, A First	Course in	Cn	aone Dynamical	Systems, Addis	on-wesi	ey Publishing Cor	upany,	mc.

Т	itle (of the				DIF	FE]	LYSIS FOR RENTIAL	Nature of the Course	Maj 20/21		Subject Code		TDSMA 0/21/22
	edits		•	Semest			8	Type of course	Theory	No		Hours of ching		75
		(IA)		KS	25	E	nd Semester (ES)		75	D	uration of E	SE	3 hrs
Cou any		Prereq	uis	ites if	Basi	c kno	owl		us, ODEs, line	ar algeb	ora			
СО	11							Course Oute Euler's monations (OD)	ethod, Trape	zoidal	rule	e, and Thet	a me	thod to
Implement Adams-Bashforth methods and Backward Differentiation Form solving ODEs, and analyze their order and convergence.											ormu	las for		
Cos Utilize Gaussian quadrature, explicit and implicit Runge-Kutta methods, Collocation method for numerical integration and solving ODEs.											ds, a	and the		
CO	14	Analy	ze	the stab	ility	and	co		of numerica				rly f	or stiff
СО)5	Demo	ons	trate erroi	cont	trol t	ecl		apply the M	ilne de	evice	and embed	lded	Runge-
Uni	it No							Course Con					No.	of Hours
		ı					Th	eory Compone	nt (75 Hours)				I	
	1	Eul	ler's	s method	, Tra	pezo	oida	al rule, Thet	a method.					15
	2			s - Bas			net	thod, Order	and conv	ergeno	ce,	Backward		15
	3	Ga	uss		rature	e, E	_	olicit Runge	- Kutta sche	eme, I	mpli	cit Runge		15
	4			equations, nd multist				•	and A- Stab	ility	- A-s	stability of		15
	5	Err	or	Control, I	Milne	e Dev	vic	e, Embedde	d Runge Kut	ta met	hod			15
1		h Iserle	es, A		se in th	he Nu		Prescribed rical Analysis o	l Text f Differential Ec			ıbridge		
1	Rich 2012		Bur	den and J.D	ouglas	s faire	s, N	Books for R Numerical Analy	eference ysis(9th Edition)	, Cenga	ge Le	earning India,		

	of the urse	LA	ATTICE	ТН	EORY	Nature of the Course	Maj 20/21		Subject Code		DSMA /21/22
Credi		Semesto	er	8	Type of course	Theory		o. of 2	Hours of ching	20.	75
Inter	nal Assess (IA	sment Mark	25		End Semester I (ESI		75		uration of E	SE	3 hrs
Course	Prerequi	isites if	introduc	ctoi	wledge of calculury set theory. Far tructures is recon Course Out	miliarity with ommended for u	order re	latio	ns, functions,	and	oncepts.
CO1	Unders		mental	COI	ncepts of pose		nonoto	ne n	naps, and c	hain	
CO2		transfinite i te posets.	inductio	n,	ordinal, and c	ardinal arith	metic	to w	ell-ordered	sets	and
CO3	Analyz	e lattice str	uctures	, se	emilattices, clo	sure operato	ors, an	d lat	tice homon	norpl	iisms.
CO4	Charac	terize modi	ularity,	sei	mi-modularity	, partition la	ttices,	and	distributive	latti	ces.
CO5	Explore	e Boolean l	attices,	В	oolean algebra	s, Boolean r	ings, a	nd t	heir homon	norph	iisms.
Unit N	0				Course Cont	tent				No.	of Hours
					Theory Compone						
1	Dow Cond	n Map – I litions and	Height a	anc	lity – Monoto I Graded Pose ss – Dilwortl Poset of Parti	ets – Chain n's Theorem	Condi	tion	s – Chain		15
2					nal Numbers – Cardinal Arithn						15
3	Closi Arbit Prop	ure and Inl trary Joins erties of	neritanc — Latti Lattices ensenes	e –	- Semilattices s – Meet Stru – Irreducible - Lattice Hom	Arbitrary ctures and 0 Elements	Meets Closur – Co	Equ e O _j mpl	nivalent to perators — eteness —		15
4	Mod		Semi m	od	finitions and lularity – Parti	-					15
5	Hom		ns – Cl		lean Algebras acterizing Bo	olean Lattic	_				15
Sta	even Roma	n Lattices and	d Ordered	Se	Prescribed ets, Springer Scien						
	apters: 1,2		a Oracica	. 50	a, springer selen	cc, 2000.					
<u>'</u>					Books for Re						
1 Ga	ırrett Birkh	off, Lattice Th	heory, An	neri	can Mathematical	Society, Colloc	juim Pu	blicat	tions, 1948.		

Credits		le of t			AL TRAI IR APPL		ORMS AND ATIONS	Nature of the Course	Maj 20/21		Subject Code		TDSMA /21/22
Course Prerequisites if asic knowledge of differential equations. Fourier transforms, and mathematical methods for solving ordinary and partial differential equations. Course Outcomes	Cred	lits	4				Type of	Theory	No				
mathematical methods for solving ordinary and partial differential equations. CO1 To study about Laplace transform and Inverse Laplace transform CO2 To study Hankel transform with properties and to solve the PDE CO3 To study Hankel transform with properties and to solve the PDE CO4 To study Mellin transform with properties and to solve the summation series To study Mellin transform with properties and to solve the summation series To study Mellin transform with properties and to solve the summation series To study and understand about Z- transform with properties and to apply for solving the difference equations No. of Hours To study and understand about Z- transform with properties and to apply for solving the difference equations Laplace transforms - Definition and Examples, Basic Properties of Laplace Transforms, The Convolution Theorem and Properties of Convolution, Differentiation, and Integration of Laplace Transforms. Its Interventian Theorems and Watson's Lemma. Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms (Sections-S.1, 7.2, 7.3, 7.4), Unit II: Applications of Laplace Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6) Unit V: Z Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6) Unit V: Z Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Properties of Device Properties of Devi	Inte	rnal			25	E			75	D	uration of E	SE	3 hrs
CO1 To study about Laplace transform and Inverse Laplace transform CO2 To study about Applications of Laplace transform CO3 To study Hankel transform with properties and to solve the PDE CO4 To study Mellin transform with properties and to solve the summation series CO5 To study and understand about Z- transform with properties and to apply for solving the difference equations Unit No Course Content No. of Hours Convolution Difference equations Laplace transforms - Definition and Examples, Basic Properties of Laplace Transforms, The Convolution Theorem and Properties of Convolution, Differentiation, and Integration of Laplace Transforms. 1 Convolution, Differentiation, and Integration of Laplace Transforms. 1 The Inverse Laplace Transform and Examples, Tauberian Theorems and Watson's Lemma. Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms Capables, Basic Operational Properties of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections	Cours	se Pro	erequi	sites if	Basic kr	nowl	edge of differe	ntial equations	, Fouri	er tra	ansforms, and		
To study about Laplace transform and Inverse Laplace transform	any				mathem	atica			ry and j	partia	al differential	equat	ions.
To study about Applications of Laplace transform	- CO1		, , ,	1 1 .T	1 ,					C			
To study Hankel transform with properties and to solve the PDE				•	_			•	e trans	storn	n		
To study Mellin transform with properties and to solve the summation series	CO2	_		•									
To study and understand about Z-transform with properties and to apply for solving the difference equations Theory Component (75 Hours)	CO3	T	o stuc	ly Hankel	transfor	m v	vith propertie	s and to solv	e the	PDE	3		
the difference equations Course Content	CO4	To	o stud	y Mellin tı	ransforn	ı wi	th properties	and to solve	the s	umn	nation series	S	
Unit No	CO5	To	o stud	y and unde	erstand a	ıboı	ıt Z- transfor	m with prop	erties	and	to apply for	rsolv	ing
Laplace transforms - Definition and Examples, Basic Properties of Laplace Transforms, The Convolution Theorem and Properties of Convolution, Differentiation, and Integration of Laplace Transforms. The Inverse Laplace Transform and Examples, Tauberian Theorems and Watson's Lemma. Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms to Finite Difference Equations. Definition of the Z Transforms to Finite Difference Equations. Its Applications of Z Transforms to Finite Difference Equations. Its Applications of Z Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-1.2, 1.2.2, 12.3, 12.4, 12.5, 12.6) Books for Reference Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 Ian Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis Ian	COS	th	e diffe	erence equ	ations						1 1 2		C
Laplace transforms - Definition and Examples, Basic Properties of Laplace Transforms, The Convolution Theorem and Properties of Convolution, Differentiation, and Integration of Laplace Transforms. The Inverse Laplace Transform and Examples, Tauberian Theorems and Watson's Lemma. Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms to Finite Difference Equations. Definition of the Z Transforms to Finite Difference Equations. Its Applications of Z Transforms to Finite Difference Equations. Its Applications of Z Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-1.2, 1.2.2, 12.3, 12.4, 12.5, 12.6) Books for Reference Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 Ian Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis Ian	Unit N			<u> </u>			Course Cont	tent				No.	of Hours
Laplace transforms - Definition and Examples, Basic Properties of Laplace Transforms, The Convolution Theorem and Properties of Convolution, Differentiation, and Integration of Laplace Transforms. The Inverse Laplace Transform and Examples, Tauberian Theorems and Watson's Lemma. Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Application of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-7.1, 1.2.2, 12.3, 12.4, 12.5, 12.6) Books for Reference Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis						Th							
Laplace Transforms, The Convolution Theorem and Properties of Convolution, Differentiation, and Integration of Laplace Transforms. The Inverse Laplace Transform and Examples, Tauberian Theorems and Watson's Lemma. Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis			Lanla	ace transfo	orms -			` '	Basic	Pro	nerties of		
1 Convolution, Differentiation, and Integration of Laplace Transforms. The Inverse Laplace Transform and Examples, Tauberian Theorems and Watson's Lemma. Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Applications of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. 1 Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8) ,Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6),Unit V: Z Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6),Unit V: Z Transforms (Sections-7.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 Books for Reference Ian N. Snedden, The Use of Integral Transforms and Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009.			-					-			•		
The Inverse Laplace Transform and Examples, Tauberian Theorems and Watson's Lemma. Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Application of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference In Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	1		-										15
Watson's Lemma. Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Applications of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8) ,Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6),Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	-							_	-				10
Applications of Laplace Transforms to the Solutions of Ordinary Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Application of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8) ,Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6),Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference In N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis				•		alisi	ioiiii ailu Exa	impies, rauc	CHan	1110	orems and		
Differential Equations, Partial Differential Equations, Initial and Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Applications of Mellin Transforms, Application of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis							т с	4 41 0 1	ı•	C	0.1:		
Boundary Value Problems. Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Applications of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6),Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis					-						•		
Introduction, The Hankel Transform and Examples, Operational Properties of the Hankel Transform, Applications of Hankel Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Applications of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	2		Diffe	rential E	quations	, F	Partial Diffe	rential Equ	ations	, Ir	nitial and		15
Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Applications of Mellin Transforms, Applications of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit II: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis			Boun	dary Valu	e Proble	ms.							
Transforms to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Applications of Mellin Transforms, Applications of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit II: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis			Intro	duction, [The Ha	nke	l Transforn	n and Exa	mples.	, O	perational		
to Partial Differential Equations. Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Application of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6),Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition,2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	3								-		-		15
Introduction, Definition of the Mellin Transform and Examples, Basic Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Application of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis			-				-	ph ea tions of	TIMITI	.01 1	idiisioiiiis		10
4 Operational Properties of Mellin Transforms, Applications of Mellin Transforms, Application of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections- 8.1, 8.2, 8.3, 8.4, 8.6),Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis								T. C	1.5		1 D '		
Transforms, Application of Mellin Transforms to Summation of Series. Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis										-			
Introduction, Dynamic Linear Systems and Impulse Response, Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections- 8.1, 8.2, 8.3, 8.4, 8.6),Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	4												15
Definition of the Z Transform and Examples, Basic Operational Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections- 8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis					•								
Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections- 8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis			Intro	duction,	Dynami	c]	Linear Syst	ems and	Impuls	se :	Response,		
Properties of Z Transforms, The Inverse Z Transform and Examples, Applications of Z Transforms to Finite Difference Equations. Prescribed Text Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections- 8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	5		Defin	nition of	the Z	Tra	nsform and	Examples,	Basic	e O	perational		15
Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. 1 Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections- 8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference 1 Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	3		Prope	erties of Z	Transf	orm	s, The Inver	rse Z Transf	orm a	nd l	Examples,		13
Lokenath Debnath and Dambaru Bhatta, Integral Transforms and Their Applications, Third Edition, CRC Press, Taylor and Francis Group, A Chapman and Hall Book, 2015. 1 Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections- 8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference 1 Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis			Appl	ications of	Z Trans	sfor	ms to Finite	Difference E	quatio	ons.	_		
Taylor and Francis Group, A Chapman and Hall Book, 2015. Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis			- 11				Prescribed	Text	•				
Unit I: Laplace Transforms (Sections-3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8), Unit II: Applications of Laplace Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections-8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis									pplicati	ons,	Third Edition,	CRC I	Press,
Transforms (Sections-4.1, 4.2, 4.3), Unit III: Hankel Transforms (Sections-7.1, 7.2, 7.3, 7.4), Unit IV: Mellin Transforms (Sections- 8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis									201	TT. S	II. A1!		T ==1
Transforms (Sections- 8.1, 8.2, 8.3, 8.4, 8.6), Unit V: Z Transforms (Sections-12.1, 12.2, 12.3, 12.4, 12.5, 12.6) Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis													
Books for Reference I Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis			-					,					
 Ian N. Snedden, The Use of Integral Transforms, McGraw Hill, 1972 B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis 	1	141151	011119 (2	occuons- 0.1,	0.4, 0.3, 0	. 7, 0		,	0113-12.	1, 14.	۷, ۱۷.۶, ۱۷. ۱, ۱	12.2, 1	2.0)
B. Davies, Integral Transforms and Their Applications, Springer, Texts in Applied Mathematics 41, Third Edition, 2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	1 Ia	an N.	Snedde	en, The Use o	f Integral	Tran							
Edition,2009. Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	В								exts in	App	lied Mathemat	tics 4	1, Third
Alexander D. Poularikas, Transforms and Applications Handbook, Third Edition, CRC Press, Taylor and Francis	7			~			**						
Group, 2010.	A	lexar	nder D.	Poularikas,	Transform	s and	d Applications I	Handbook, Third	d Editio	n, CF	RC Press, Tayl	or and	Francis
	3 G	iroup,	, 2010.										

	le of ours	the se	INTE	GRAL E	Q U.	ATIONS	Nature of the Course	Majo 20/21/		Subject Code		DSMA /21/22	
Cred		4	Semest		8	Type of course	Theory			Hours of ching		75	
Inte	rnal		essment Marl IA)	ks 25	E	and Semester E (ESE)		75	D	uration of l	ESE	3 hrs	
Cours any	se Pi	rereq	uisites if			edge of ordinary of mathematical me	thods for solving				value pi	roblems	
CO1		nnlı	the classifi	cation o	fint	Course Out tegral equation		initial x	79 1 11	e problem	s for (ODFs	
CO2	S		boundary			ems for ODI							
CO3	v	alue	problems.			Es into integ							
CO4	1												
CO5	- 1	Apply	y operators a	ınd Neui	nan	n series appro		lve inte	egra	al equation	1		
Unit 1	No					Course Cont					No. o	of Hours	
		т ,	1	C1 'C		eory Componer		1	1	IVID C			
1		OD		Classific	atic	on of integral	equation - 6	exampi	les -	- IVP for		15	
2		BV	P for ODE	- BVP fo	or el	liptic PDE -	Abel's probl	lem.				15	
3		- in		roblems		egral equation oundary value		-		•		15	
4			egral equati nels - a diffe			second kind	l - Introduc	ction -	De	egenerate		15	
5		Op	erators - Ne	wmann s	serie							15	
						Prescribed				1.1			
			l Stirling, Integ : Cambridge Ut	_				t from s	spect	ral theory to	applic	ations	
1 1	T	. TT. 1		F 4'	337:1	Books for Re		X 71-					
I	ıarry	Hoch	istadt, Integral	Equations,	W1le	ey Interscience P	ublication, Nev	v Y ork					

1	itle of		PARTIA E	L DIFFE				ture of the Course	Major 20/21/22	Subject Code		TDSMA 0/21/22
	edits	4	Semest		8	Type cours	se	Theory		Hours of aching		75
In	iterna		ssment Mark A)	25		End Examin	Sem nation		75	Duration of 1	ESE	3 hrs
Cou		rerequ	uisites if	Basic kn algebra i		•	linary	differential e	quations, mu	ıltivariable cal	culus, a	and linear
- W113				U		Cours	e Out	comes				
CC			tand the relati omics, financ					odelling in th	e problems	arising in vari	ous fie	elds, such
CC)2 E	Enhanc	e their mathe	matical uı	nder	standing i	n rep	resenting solu	itions of pa	rtial different	ial equ	ations.
CC	03	Classify	y the partial d	ifferentia	l equ	ations and	d tran	sform them i	nto canonic	cal form		
CC)4 a	nd way	ine the solutive equations,	by variou	s m	ethods.						
CC			ate fundamen								num p	rinciples,
		Cauchy	problem, to	take a rese	earc				differentia	l equations		
Un	it No				- TDI	Course					No.	of Hours
		E:4	O. 1 DDE	. CC				nt (75 Hours)	. 1 4 4	Camaria		
	First Order PDEs: Surfaces and their Normals, Curves and tangents - Genesis of first order PDE- Classification of Integrals- Linear equations of first Order - Integral surface passing through a curve – Cauchy problem for first order PDE – Orthogonal Surfaces. Non-linear first order PDEs: Compatible systems- Solutions of Quasi linear equations, Charpit's method- Special Types of Charpits Method, -Integral surfaces through a given The Cauchy problem for Quasi Linear case and nonlinear first order PDEs.											
	2	PDE PDE	ond Order PDI s- Canonica with constant nogeneous line	l forms of	f Hy	perbolic,	Ellip	tic, and parab	olic type P	DEs, Linear		15
	3	equa varia	erbolic PDEs tions- Initial ables, Forced plution of way	Value Pro Vibration	oble n, S	m – D'Al	embe	ert Solution, I	Method of s	separation of		15
	4	equa Mea varia to 2.	otic PDEs/Laption- Boundan, Mean valuables- Dirichles 10 in Text Botton 2.13)	ry value j e theoren let proble	orob 1- N m ar	lems- Pro Maximum nd Neuman	pertie and i	es of Harmon minimum pri oblems for a	ic function nciples- S	s- Spherical Separation of and circle (Up		15
	5	Heat Solu	Equations: I tion by sepa potential surf	ration of	-	riables- C		fication in n		•		15
1	K. Sh	nankara	Rao, Introduc	tion to Par	tial I				olications. F	Edition. 2011.		
2			n, An Elementa			artial Diffe	rentia	l Equations, N			010.	
	TNT	G., 11	D1		cc			ference	Total C	1 D 454 100		
1			on, Elements of						Internationa	al Edition, 198	b	
3			tial Differentia . Evans, Partia						Mathematics	1998		
	Lawi	CHCC C	vano, 1 artia	TITICICIIL	iai L	quarions, C	JIAUU	are bradies III I	viamemanes	, 1770.		

LIST OF MINOR COURSES-STREAM I

(within the Department and other disciplines)

	of the irse	Subject Code	MTI	OSMI01							
Credit		Semest		1	Type of course	Theory	No		Hours of ching		75
Interr	nal Assess (I <i>A</i>	sment Mark A)	25	E	and Semester (ES		75	D	uration of	ESA	3 hrs
Course any	Prerequi	isites if	Basic pr	oble	m-solving ski	lls		'			•
uny					Course Ou	tcomes					
CO1	Compre	ehend the f	fundame	ntal	concepts of	f data science	•				
CO2	Solve p	roblems in	Probab	ility	and Statisti	ics					
CO3	Solve f	undamenta	l proble	ms	in Matrices	and compreh	end th	e ap	plication of	of mat	rices
CO4	Use dat	tabases for	structur	ed a	and unstruct	ured data			_		
CO5	Summa	rize the ste	eps in th	e D	ata Science	life cycle					
Unit No			•		Course Con					No.	of Hours
		duction: N									
1		_				uisites for a l					9
	_	•		-		mat, Types of	EDA	. – U	nivariate,		
					, graphical I		1 111.		3.5.1		
		•				anding Proba	•				
2					-	ive vs Infere			-		9
		-	– Desc	ripi	tive statistic	es – Inferen	tial S	statis	stics – T		
		ributions							3.5		
		•				r Transforn					
3		-			• •	of matrices –	syste	m of	equation		9
						Eigen values		<i>(6.5.</i>	T) =		
ı						d Query Lang		,			
4						on, Window					9
		_		men	it Databases	s, Wide-colu	mn L	atab	bases and		
		phical Data				0 5 -: :					
					•	for Data Scient			-		
5		•			•	fecycle: Dat	a Dis	cove	ery, Data		9
		aration, M			ng, Model B	•					
Exercis) oxymal a a d				al Assessment 25				No.	of Hours
1						Py, and panda		yın	л.	-	
2						om a CSV file		r 1°	3.5.1	-	20
_		_	_		_	equency, Me					30
3	_	rame.	na Stanc	ıard	Deviation (of data using	rytho	n pa	ndas data		
	1.	iaiiic.								1	

	4	Plot a graph for probability distribution using Python (Normal Distribution).							
	5	Perform data analysis using SciPy.							
	6	Create a database and establish relationships between tables.							
	7 Create view to extract details from two or more tables.								
	Prescribed Text								
1	Sanjeev Wagh, Manisha Bhende, Anuradha Thakare, Fundamentals of Data Science, CRC Press, 2022. Unit-1(part 1, chapter 1), Unit 4(Part 1, chapter 3), Unit 5(Part 2, Chapter 4)								
2	Howard J.S	Seltman, Experimental Design and Analysis, CMU, 2018. Unit 1 (Chapter 4)							
3	3 Thomas Nield Essential Math for Data Science, O'Reilly Media Inc. 2022, Unit 2(Chapters 2, 3)								

Thomas Nield, Essential Math for Data Science, O'Reilly Media Inc.,2022. Unit 2(Chapters 2, 3), Unit 3(Chapter 4)

*The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

	e of th	1e	FOUN	DATION SCIENC		OF DATA II	Nature of the Course	Mino	r 2	Subject Code	MT	DSMI02
Credi		4	Semest		2	Type of course	Theory			lours of hing		75
Inter	rnal A	ssess (IA	sment Mark .)	25	E	and Semester (ES	Examination E)	75	D	uration of l	ESE	3 hrs
Cour			uisites if	Basic pr	oble	m-solving ski	11s					
		any		1		Course Ou						
CO1	Un	derst	tand the co	ncepts	of r	egression ar						
CO2	+		Data Scie				<u> </u>					
CO3						hine learnin	g algorithms					
CO4		•	Data Analy				<u> </u>					
CO5	_		n Data Vis									
Unit N	О					Course Con	tent				No.	of Hours
					Th	eory Compon	ent (45 Hours)					
1	Regression Analysis: Linear – Logistic – Multinomial logistic regression – Time Series Models											9
Machine Learning: Introduction to Decision Trees- Naïve Bayes- Support Vector Machines- Nearest Neighbour Learning- Clustering- Confusion Matrix.												9
3	I	Lang	•	cessing-	Ma		ng - Text A onents - St	•		Natural Statistical		9
4		Data Data	Science T	ools: Py	thoı	n : Basics, L	ibrary – R : R	Reading	g an	d Getting		9
5	0	descr	riptive stat	istics - b	asio	c charts - Da	oduction - Din ashboard Des Google shee	ign and	-	· ·		9
Exerci	ise No						nal Assessment 25	Marks)			No.	of Hours
1	1					gression co	efficient					
2	2	P	rogram to	count w	ord	frequency						
3	3		nstall NLT nalysis tas		ary	and perfor	m simple te	ext pro	ces	sing and		30
4	1		rogram to emmatizir	-	s th	e text (Ide	ntifying stop	words	s, St	emming,		
5	5	P	ractice plo	tting dif	fere	ent charts us						
1 U1		hapte	r 5, sec 5.1),				d Text ndamentals of Da it 3(Chapter 6), V				st Editio	on, 2022.

^{*}The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

	of the irse		EXPLORATORY DATA ANALYSIS (Practical) Nature of the Course Nature of the Code Minor 3 Subject Code MTDSMI03								
Credits	4	Semest	,	3	Type o	e Practica	31 <u> </u>	o. of H Teac	lours of hing		75
Intern		essment Marl IA)	50			ter Examination (ESA)	on 50	Dı	ıration of l	ESA	3 hrs
Course any		uisites if	Python	Prog	gramming		1	•			
CO1	Perfo	rm data load	ling, trai	nsfo		Outcomes and prelimina	ry anal	ysis fo	or real-wo	rld da	ta
CO2	Create		graphs t	o ef		communicate					
СО3		advanced ares of centr				to describe	and i	nterpr	et datase	ts, in	cluding
CO4	Critic	ally evaluate	e and dr	aw :	meaningfi	ul conclusion	s from	the an	alysis resu	ılts.	
CO5		onstrate prof vsis (TSA) u	erforming	Time	Series						
Unit No		, ,		No. o	of Hours						
				Tł	neory Comp	onent (45 Hours	s)			1	
1	-S	ploratory Da ignificance ssical and B	DA with		9						
2	Vis - T Per	sual aids for Table chart -	EDA: I - Polar o l -Techr	Line char nica	– Bar cha t – Histog l requiren	arts – Scatter gram – Lollip nents –Loadi	Plot – . oop cha	Area F rt, E	Plot – Pie DA with		9
3	Dat	ta Transform	nation: N escriptiv	/Ian e St	aging Dat tatistics, U	abase – Trans Inderstanding spersion.			_		9
4	Grouping Datasets: Understanding groupby() – Groupby mechanics Data aggregation – Pivot tables & Cross-tabulations. Correlation Understanding correlation – Types of analysis – Multivariate analysis group Titanic dataset.										9
5	Mo Reg Dat	odel Develor gression, Mo ta Analysis.	opment odel Dev Disclos	elo ing	pment and – Red Wi	ation: Hypo l Evaluation ne Analysis	EDA o	n Win	•		9
Exercis	e No					nal Assessment				No. o	of Hours
2		Visualize the o				e tools for EDA	– Eg. W	EKA.		_	
3						, Matplotlib, par	ıdas.			-	
4		Program to ger								-	30
5											
6											

	7	Program to identify the correlation of the features/parameters in the Titanic Dataset.								
	8	Perform EDA on Wine Data .								
	9 Demonstrate different visualizations based on Exercise 7.									
	Prescribed Text									
	Suresh Kumar Mukhiya, Usman Ahmed, Hands-On Exploratory Data Analysis with Python, PACKT Publi									
1 2020. Unit 1 (Chapter 1), Unit 2(Chapters 2 and 3), Unit 3(Chapters 4 and 5), Unit 4(Chapters 6 and 7),										
Unit 5(Chapter 9, 11).										

^{*}The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

T	itle of		DATA V	WRANGI (Pract		G WITH R	Nature of the Course	Mino	or 4 Subject Code	MTI	OSMI04
Cr	edits	4	Semest	Ì	4	Type of course	Practical		o. of Hours of Teaching		75
In	terna		sessment Marl (IA)	50	E	nd Semester 1 (ESA		50	Duration o	f ESA	3 hrs
Cou	rse Pi		quisites if	Foundat	ions	of Data Science	ce, R programm	ning			
any						Course Out	tcomes				
CO	1 E) em	onstrate the a	ability to	wr	te and execu	ite R code ef	ficien	tly for data n	nanipul	ation.
СО									the data gene ress analytica		
60	, l	Jtiliz	ze core func	tions of	dpl	yr for effici	ent data mai	nipula	tion, sequen	tial ope	rations,
CO	g	roup	ping, and join	ning of d	ata	frames			_		
CO	04 A	cce	ess and integr	ıg R							
CO	5 <u>[</u>)esi	gn and create								
Uni	it No										of Hours
					I						
	1	Int	troduction: S	Setting th	ie c	omputer – C	ommand line	e Man	naging		9
	1	Pro	ojects Versio	n Contro	ol –	Markdown					9
	2	R	Fundamental	s : Intro	duct	ion – Functi	ons – Vector	s – Li	ists		9
	3		nta Wrangling nta With dply	_		•		s - Ma	anipulating		9
	4	Da	ata Wrangling	g: Acces	sing	Databases -	- Accessing	Web A	APIs		9
	_	Da	nta Visualizat	tion: Des	sign	ing Data Vis	ualizations -	Creat	ting		
	5		sualizations		_	•			•		9
Ex	ercise I						Assessment ma			No.	of Hours
	1		Practice ver	rsion cor	itro]	using GitH	ub				
	2		Perform op	erations	usii	ng Data fram	es				
	3		Perform sec	quential	ope	rations using	dplyr				
	4		Practice res	haping e	educ	ational statis	stics using tie	dyr			20
	5		Download,	install, p	rac	tice Plotly, F	Rbokeh, Leaf	let Pa	ckage		30
	6						sing Seattle d				
			+				Plotly, Rbc			:t	
	7		Packages				110015, 1100	, , , ,			
			<u> </u>			Prescribed				<u> </u>	
			reeman and Joel lize Data with R				Data Science: S	Start Wr	riting code to Wi	rangle, A	nalyze,
1							Unit 3/ Chanter	s 9 10	11, 12), Unit 4(Chanters	: 13 14)
		•	apters 15,16, 17	•	р	······································	- III o (onapion	, 10,	, <i>j</i> ,	2apton	,,,
			·			Books for Ro	eference				
1	Bradl	ey C.	Boehmke, Data	Wranglin	g wit	h R, Springer In	nternational Pub	lishing	Switzerland 201	6	
2			Irizarry, Introdu ss,2024.	iction to D	ata S	cience: Data W	rangling and Vi	sualizati	ion with R, Data	Science	Series,

^{*}The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

Title (<u>}</u>	PR	OBABI STAT		TY AND ICS	Nature of the Course	Mino	or 5	Subject Code	MTI	OSMI05
Credits	4		Semest	er	5	Type of course	Theory			Hours of ching		75
Intern		sess (IA	sment Mark	25	5	End Semester 1 (ESA		75	D	uration of l	ESA	3 hrs
Course l	Prere	qui	isites if	Basic	Kno	owledge of Prob	ability					
						Course Ou	tcomes					
	and	rul	es for calcu	ılating	pro							
	and	cor	ntinuous.	_		m variables a	-	-				
	Calculate mathematical expectations, including mean, variance, and covariance, and apply Chebyshev's theorem to assess variability. Explore and apply various discrete and continuous probability distributions, including											
	bino	mi	al, Poisson	, and n	orn	nal distribution	ns, in real-wo	orld sc	enai	rios.		uding
		-				sampling dist	n, for data an	-	_		s testi	ng. of Hours
					7	Theory Compone					110.1	J1 110u13
1	Pı	ob	ability of	Event	-	ace - Events Additive Rul et Rule - Baye	es - Condit	•	-			9
2	pr	ob		ributio	ns	Probability di - Continuous			1			9
3	M V	ath aria	nematical E	Expecta	itio	n: Mean - Var binations of F						9
4	B: Po D	ino oiss istr	mial and M son Distrib ribution- N	Iultino oution Iormal	mia anc Di	Probability Distribution I the Poisson stribution- A al Distribution	s- Hypergeor Process- C reas under t	ontinu	ous	Uniform		9
Fundamental Sampling Distributions and Data Descriptions: Random Sampling- Some Important Statistics- Sampling Distributions- Sampling Distribution of Means and the Central Limit Theorem- Sampling Distribution of S ² - t-Distribution- F-Distribution										-9		
Exercise	No			Practi	cal C	omponent (Intern	al Assessment 25	Marks)			No. o	of Hours
1			mplement				. 11					
2		S	imulate ra	ndom a	and	Continuous v	ariable					

3	Implement Binomial distribution									
4	Implement Poisson Distribution	30								
5	Implement Normal Distribution									
6	Implement t-Distribution- F-Distribution									
7	Implement F-Distribution									
	Prescribed Text									
1	R.E.Walpole, R.H.Myers, S.L.Myers, Keying Ye, Probability and Statistics for Engineers and Scientists, Prentice Hall, 9 th Edition, 2012 Unit 1(Chapter 2, Sections 2.1-2.7), Unit 2(Chapter 3, Sections 3.1-3.4), Unit 3(Chapter 4, Sections 4.1-4.4), Unit 4(Chapters 5, 6, Sections 5.2, 5.3, 5.5, 6.1-6.4), Unit 5(Chapter 8, Sections 8.1-8.7)									
	Books for Reference									
1	Hogg, R.V., Mc Kean J W and Craig, A.T., Introduction to Mathematical Statistics, Pearson, 6th Edition	ition, 2021								

^{*}The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

Title cou	of the		CRACTI SUALIZ (Practi	AT		N	ature of the Course	Min	or 6	Subject Code	MTD	OSMI06	
Credits		Semest		6	Type o course	;	Practical	No		Hours of ching		75	
	(I	ssment Mark A)	50			er E ESE	xamination)	50	D	uration of	ESA	3 hrs	
Course any	Prerequ	uisites if	Founda	tion	s of Data Sc								
CO1		stand the fo					omes f visualizati	on an	d th	e relation	ship b	etween	
CO2	Apply various techniques to visualize spatial and geospatial data effectively.												
CO3	approaches.										lifferent		
CO4	Explore methods for visualizing trees, graphs, networks, and textual dat										oresen	tations.	
CO5	Implement interaction techniques to create interactive data visualizations across various data spaces.												
Unit No					Course C	onte	nt				No.	of Hours	
	1			Т	heory Comp	onen	t (45 Hours)				1		
1	Introduction: Meaning of Visualization - History of Visualization -Relationship between Visualization and Other Fields-The Visualization Process - The Role of Cognition- The Scatterplot. Visualization Foundations: The Visualization Process in Detail - Semiology of Graphical Symbols - The Eight Visual Variables - Historical Perspective - Taxonomies										9		
2	Vis Two Cor Vis -Vis	ualization To-Dimension bining Tecuralization T	echnique Chniques	ies ta - s.	for Spatial Three-Din for Geospa	nens itial	ta: One-Din sional Data Data: Visua ion of Line	-Dyn alizinį	nami g Sp	ic Data -		9	
3	Visualization Techniques for Time-Oriented Data: Introduction — Definitions -Visualizing Time -Time Bench. Visualization Techniques for Multivariate Data: Point-Based Techniques-Line-Based Techniques -Region-Based Techniques - Combinations of Techniques.											9	
4	Visualization Techniques for Trees, Graphs, and Networks: Displaying Hierarchical Structures-Displaying Arbitrary Graphs/Networks- Otl Issues-Related Readings												

	Text and Document Visualization: Introduction-Levels of Text	
	Representations-The Vector Space Model-Single Document	
	Visualizations -Document Collection Visualizations	
	Interaction Concepts: Interaction Operators -Interaction Operands and	
	Spaces -A Unified Framework.	
5	Interaction Techniques: Screen Space -Object Space -Data Space -	9
	Attribute Space-Data Structure Space-Visualization Structure Space-	
	Animating Transformations -Interaction Control	
Exercise No	•	No. of Hours
1	Scatterplot Basics: Create a scatterplot to visualize the relationship	
	between two variables using Matplotlib and Seaborn.	
	Visual Variables Demonstration: Demonstrate the eight visual	
2	variables (e.g., position, size, shape, color) by creating sample	
	visualizations.	
	One-Dimensional Data Visualization: Plot a line graph to visualize	
3	temperature variations over a week using Matplotlib.	
	Geospatial Data Visualization: Plot geographical data (e.g.,	
4	locations of cities) on a world map using the folium library.	
	Time Series Data Visualization: Visualize daily sales data for a	
5	month using a time series line chart with Matplotlib.	30
		30
6	Multivariate Data Visualization: Create a pair plot for a dataset with	
	multiple variables using Seaborn to show relationships.	
7	Tree Visualization: Visualize a hierarchical structure (e.g., a family	
	tree) using the networkx library.	
8	Text Data Visualization: Create a word cloud from a given text	
0	document using the wordcloud library.	
	Interactive Scatterplot: Build an interactive scatterplot using Plotly,	
9	allowing users to zoom and hover over points to see details.	
	Animated Transformation: Create an animated bar chart to show	
10	population changes over time using Matplotlib or Plotly.	
	Prescribed Text	
	w Ward, Georges Grinstein, Daniel Keim, Interactive Data Visualization – Foundations, ations, CRC Press, 2 nd Edition, 2015.	Techniques an
7,8, sec	Chapters 1,4, sections 1.1-1.5, 1.7, 4.1-4.5), Unit 2(Chapters 5,6, sections 5.1-5.5, 6.1-6.4), tions 7.1-7.4, 8.1-8.4), Unit 4(Chapters 9,10, sections 9.1-9.4, 10.1-10.5), Unit 5(Chapters .3, 12.1-12.8)	` *
11.1-1	Books for Reference	
Abha F	Books for Reference S, Sharath C G, Shubhangi H, Anshu K, Interactive Data Visualization with Python, Packt Pu	blishing, 2 nd

¹ Abna B, Sharath C G, Shubhangi Fi, Alishu K, Interactive Data visualization with Lython, Lack Lucius Edition, 2020.

*The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

	of the irse	CALCU	LUS OF	VA	RIATIONS	Nature of the Course	Mino	r 7	Subject Code	MT	DSMI07		
Credits		Semest		7	Type of course	Theory			Hours of ching		75		
	(IA		25		End Semester (ES	E)	75		Ouration of		3 hrs		
Course any	Prerequ	isites if			basic concept	ing of calculus s of mathematic				quation	ns, linear		
CO1	To lear	n about fur	nctionals	s an	Course Ou d solving rel	ated variation	nal pro	ble	ms by Eul	er's ed	quation		
CO2	To und					roblems func							
CO3		o understand and solve the variational problems functionals depending on higher rder derivatives											
CO4		To study and understand about canonical form of Euler equations and other ransformations, Noether's Theorem and conservation laws											
CO5	To lear	learn about the second variation and Legendre conditions of a functional											
Unit No)	Course Content Theory Component (75 Hours)											
1	problem's The case of several variables simple variable endpoint problem- The variational derivative- Invariance of Euler's equation.[Chapter-1]								Euler's		15		
1	prob equa The	problem- The variational derivative- Invariance of Euler's									15		
2	deriv	vatives-Var	iational	c form- Functionals depending on higher order l problems with subsidiary conditions. [Chapter-							15		
3	End	points lyin	ig on tw	o g		derivation o or surfaces- Chapter-3]					15		
4	equa Noet	tions- The	Legend Forem- Tl	dre ne p	transformatiorinciple of	ns- First into on- Canonic least action- theorem.[Cha	al tran	rva	rmations-		15		
5	varia		endre c			l- The form					15		
1 I.M	Gelfand	and S V Form	in Calcul	ıs of	Prescribed Variations Do	d Text ver Publications,	2000						
					Books for R	eference							
ΜI						-Hall of India, 200 Exercises in the O		of V	ariations Mir I	Publishe	ers.		
, ,	scow 1975	, S.I. Makarenk	o unu A.I.	1001	, i rootoms and	. LACICISCS III IIIC (Jaiouius (J1 V (aonone	,		

T	itle o	of the				_	UATIONS CTIONS	Nature of the Course	e Mii	or 8	Subject Code	MTD	SMI08
Cr	edits	4		ester		7	Type o	f Theory	·	o. of H Teac	lours of		75
In	tern		essment M (IA)	arks	25	E		er Examinatio ESE)	n 75	Di	ıration of l	ESE	3 hrs
Cou		Pre re	quisites if	Bas	sic co	ncep	ots of linear with calculu	al equations (f algebra (matri s (series expan Outcomes	x operat	ions, ei	genvalues,	_	/
CO)1		arison theor				olutions to	differential equalities of the		110			
CO								pergeometric on formulas for				ı	
CO	13	-	re Legendre oplications.	polyno	mials	s, Be	ssel function	ons, and the Ga	mma fu	nction,	and study t	heir pro	operties
CO			linear syste geneous sol		iffere	ntial	equations	with constant of	oefficie	nts and	examine th	eir	
CO)5							olutions, and a ing differential			d of success	sive	
Un	it No						Course C	ontent				No. o	of Hours
		•				The	eory Comp	onent (75 Hour	s)			•	
	1	Th vib lin Se	e Sturm corating stri	omparing. Se ons – C	ison ries s Ordin oter-5	thec solu ary	orem– Eig tions of fi points - F	The Sturm ren values an rst order equal rsinguate, 26, 27, 28, 2	d Eige ations lar poi	n funct – Seconts. C	tions and ond order hapter-4,		15
	2	Co dif	ferentiation	hyperson fo	geon rmul	netri as,	transfo	ions, integ	mulas,	eprese sun	entations, nmations		15
	3	fur		The G	amm	a f	unction -	of Legendre Properties [1].					15
	4		•				_	linear sy 5, 56 of [1].	stem	with	constant		15
	5	Th	e existenc	e and	uniqı	aene	ess of solutheorem.	utions – The Chapter-13,					15
1	Edu	cation(India) Comp	any, 200)3. Sec	ction	th Applications: 22-30, 32	bed Text ons and Historic -35, 37-35 55-		2 nd Edit	ion, McGrav	w Hill	
2	E. D	. Rain	ville, Special	l function	ns, Ma	icmi]							
1	Earl	Coddin	gton and Nor	man Levi	nson.	Theor		Reference Differential equa	tions. TA	TA McG	raw Hill. 201	7	
2	N. M		ne, Special fur					ssical functions o					ons, New

LIST OF MINOR COURSES-STREAM II

(Arts, Commerce and Humanities)

	e of the urse	COMPU	JTATIO	NAL SKILLS	Nature of the Course	Minor	Subject Code					
Credit		Semest		Type of course	1 neory		of Hours of eaching		75			
Inter		ssment Mark A)	25		r Examination SE)	75	Duration of E	SE	3 hrs			
Course	Prereq	uisites if	Basic m	nathematical and	,	skills						
	T			Course C								
CO1				gratios, propor								
CO2	Apply proble	-	rations a	and determinar	nts to solve line	ear equat	tions and mu	ltivaı	riable			
CO3		Identify and analyze various types of functions and their real-world applications in business.										
CO4	Devel	Develop logical reasoning skills to solve problems involving analogies, blood and other reasoning concepts.										
CO5		Demonstrate proficiency in quantitative aptitude and basic mathematics for conexams.										
Unit No	0			Course Co	ontent			No.	of Hours			
				Theory Compo Percentage: Ra	nent (75 Hours)			1				
1	invo Invo Pero inte		15									
2	Def Det mat of exis	equated monthly instalments (EMI) – Problems. Matrices and Determinates (up-to order 3 only): Multivariable data - Definition of a Matrix; Types of matrices; Algebra of matrices; Determinates – Ad-joint of a matrix – Inverse of a matrix via ad-joint matrix – homogeneous system – Solution of a non-homogeneous system of linear equations (not more than three variables) – Conditions for existence and uniqueness of solution – Solution using the inverse of the										
3	bus con valu fund irra Sup fund	Functions: (To identify and define the relationships that exist among the business variables). Definition of function, constants, variables, continuous real variable, domain or interval –Types of functions – one valued function – Explicit function – Algebraic functions – Polynomial functions – Absolute value function – Inverse function – Rational and irrational function – Monotone function – Even and odd function – Supply/demand function – Cost function – Total revenue function – Profit function – Production function – Utility function – Consumption function.										

	4	Arithmetical Logical Reasoning: Analogy Blood Relation Directional Sense Number and Letter Series Coding-Decoding, Calendars, Clocks, Venn Diagrams, Seating Arrangement Syllogism, Mathematical Operations	15
		Competitive Review: Quantitative Aptitude, Quantitative Ability (Basic	
	5	Mathematics) Number Systems - LCM and HCF, Decimal Fractions,	15
	3	Simplification Square Roots and Cube Roots – Average, Problems on	13
		Ages, Surds & Indices, Percentages Problems on Numbers.	
	_	Prescribed Text	
1	Kappo	or, V.K., Business Mathematics, Sultan Chand & Sons, New Delhi	
	_	Books for Reference	
1	Agarw	al, B.M., Basic Mathematics & Statistics, Sultan Chand & Sons, New Delhi	
2		palan, S. & Sattanathan., R., Business mathematics, McGraw-Hill, New Delhi	
3	Bari, E	Business Mathematics, New Literature Publishing Company, Mumbai.	
4	Bhardy	waj, R. S. (2019). Business Mathematics and Statistics. New Delhi: Scholar Tech Press	
5	Thukra	al, J. K. (2017). Business Mathematics and Statistics. New Delhi: Maximax Publications.	
6	Vohra,	N. D. (2014). Business Mathematics and Statistics. New Delhi: Tata McGraw Hill Education India.	

	of the	BUSIN	NESS STA	ATISTICS	N	ature of the Course	Min	or	Subject Code			
Credit		Semest	er		pe of urse	Theory	No		Hours of aching		75	
Interi		essment Mark IA)	^(S) 25	End Ser	nester E (ESE	Examination E)	75	D	Ouration of E	SE	3 hrs	
Cour		equisites if	1	Ва	`	nematical and	problen	n-so	lving skills		•	
	an	y		Co	urse Out	comes						
CO1		rstand and ap		-	of stat	istics, includ	ing da	ta c	ollection, cl	assif	ication,	
CO2	Analy	ze univariat	e data u	sing meas	ures of	central tend	lency,	dist	persion, and	skev	wness.	
		y correlation										
CO3		onships betw	_		•	•						
CO4	Construct and analyze index numbers, including price indices and various calculation.										ods for	
CO5	Analyze time series data by identifying trends, seasonal variations,										pplying	
COS	appro											
Unit No	Course Content										of Hours	
	1					nt (75 Hours)						
1	Statistics: Definition-Functions, Scope, and Limitations of statistics - Statistical Enquiry Stages in conducting a statistical survey-Primary data Vs secondary data-Sources of secondary data - Classification, Tabulation and Presentation of data- Diagrams										15	
2	Av of We of dis Coo De eac	and Presentation of data- Diagrams Univariate Analysis: (a) Measures of Central Tendency: Average – Meaning - Characteristics of a typical average - Computation of Mean, Median, Mode, Geometric Mean, Harmonic Mean, and Weighted Arithmetic Mean- Merits and Limitations of each.(b) Measures of Dispersion: Dispersion - Meaning - Properties of a good measure of dispersion - Absolute versus relative measure of dispersion - Computation of Range, Quartile Deviation, Mean Deviation, Standard Deviation and Co-efficient of Variation- Merits and Limitations of each.(c) Skewness: Meaning - Variation versus Skewness - Measures of										
3		Skewness- Karl and Co-efficient of Skewness. Bi-variate Analysis: (a) Simple and Liner Correlation Analysis: Meaning – Definition - Types of Correlation Methods of Studying Correlation - Correlation) and Properties. (b) Simple and Liner Regression Analysis: Definition – Correlation Vs Regression Regression lines and Regression Equations Regression co-efficient- Computation of correlation co-efficient from regression co-efficient.										
4	Ty	Index Numbers: Definition - Characteristics of Index numbers - Uses - Types of index numbers - Construction of Price Index numbers - Unweighted Index numbers - Weighted Index numbers - Tests										

		of adequacy of Index number - formulae. Chain - basis index number base shifting, splicing, and deflating problems in constructing index						
		numbers; Consumer price index						
		Analysis of Time Series:						
		Introduction Uses - Components of time series - Measurement of trend-						
	5	graphical method, semi-average method, moving average and method of	15					
	C	least square (including linear, second degree, Parabolic and exponential						
		trend) - Computational of seasonal, indices by simple average, Ratio -						
		trend, ratio - to - moving average and link relative methods.						
		Prescribed Text						
1	J. K.	Sharma, Business Statistics, Vikas Publishing House (P), Ltd., New Delhi.						
2	R.S.N	J. Pillai and Bagavathi, Business Statistics, S. Chand & Co., New Delhi						
	Books for Reference							
1	S.P. G	Supta & M.P Gupta, Statistical Methods, Sultan Chand & Co, New Delhi						
2	K. Ala	agar, Business Statistics, Tata McGraw Hill Publications, New Delhi						
3	Arora	& Arora., Statistics for Management, S.Chand & Co, New Delhi						

Title cou			NUM	ERICAI	AN	ALYSIS	Nature of the Course	Mir	ıor	Subject Code			
Credits	S	4	Semest	er		Type of course	Theory	No		Hours of sching		75	
Intern	al A	Assess (IA)	ment Mark)	25 25		End Semester (ES		75		Ouration of E	SE	3 hrs	
Cours	e Pı	re req	uisites if	Basi	c un	derstanding of	algebra, calculı	ıs, and	prol	olem-solving	techni	ques.	
				_		Course Ou							
CO1							ons using var gula Falsi, an				ods si	uch as	
CO2					_	•	ions using nu del methods.	meric	al to	echniques li	ke G	auss	
CO3	Pe	erform interpolation and numerical differentiation/integration using methods like ewton-Gregory, Lagrange, and Simpson's rules.											
CO4	Ap	pply numerical methods to solve ordinary differential equations of first and second der using techniques like Taylor series, Picard's method, and others.											
CO5		mplement advanced methods for solving ordinary differential equations, including culer's method, Runge-Kutta method, and Milne's predictor-corrector method.											
Unit No						Course Con	tent				No.	of Hours	
						eory Compone					ı		
1	Numerical solution of algebraic and transcendental equations — Bolzano's bisection method - Successive approximation method —											15	
	-+	Regula falsi method – Newton-Raphson method. Numerical solution of simultaneous linear algebraic equations – Gauss											
2		elimi		thod - (near algebraic mination met	_				15	
3	1	Finite backv Lagra interp Integr	e difference ward inter ange's interpolation to ration — Ti	e operat rpolatio terpolat formula rapezoio	n – ion – dal r	- Newton's formula fo Numerical rule – Simpso	n – Newton-C divided diffor uneven i differentiat on's 1/3rd rul	ference intervalue ion e.	ee fals	formula – – Gauss Numerical		15	
4	:		d order – S			-	ferential equa – Taylor serie					15	
5	Euler's method – Improved Euler's Method - Modified Euler's Method – Runge- Kutta method of second and fourth order – Milne's predicte corrector method.											15	
1 Uni	t 1:	Chapt		Jnit 2: Cl	napte	-	nkataraman, Nati apter 6 and 9, Un						
1 Cor	nput	ter orie	ented Numeri	cal Metho	ods b		H(P)Ltd. e-Leari	ning So	urce				

Title cou			PTIMIZ ECHNIQ			Nature of the Course	Min	10r	Subject Code			
Credits	4	Semest	er		Type of course	Theory	No.	of H	ours of Teaching	75		
Intern		ssment Mark A)	25]	End Semester (ES		75	D	ouration of ESE	3 hrs		
Cours	e Prere any	quisites if	Basic kno mathema			-	ethods,	and p	problem-solving techn	niques in		
CO1	and ap	pply Linear	Program	mi	ng methods t	o production	alloc	atio	s Research (O.R.) n, product mix, tical formulations			
CO2		-	_	_		g the Simple method for o						
CO3				-		ems using m lity and dege			te the Modi transportation.			
CO4		_			_	aximizing as g special case	_		. •			
CO5	appropriate solution methods and handling special cases in assignments. Use PERT/CPM for network scheduling, apply critical path analysis, and understand network construction rules for concurrent activities.											
Unit No	Course Content N											
1	O.R progr	-Nature an ramming personance produced in the contract of the	d feature problem: et mix p	ov es N rob	of O.R. – A Mathematical lem, produc	oduction – O Applications formulatio	of O on-pro proble	pera duc em	development of ations Research tion allocation only- Graphical	15		
2	Linea comp	ar progran	nming procedure	orol –T	olem- Simp he Simplex A	olex Method	d: In	trod	uction – The tificial variables	15		
3	Trans probl	sportation p	roblem: Basic F	Def	finition- Forr ible solution				of transportation - degeneracy in	15		
4	Assig – sol	gnment prob	olem: Int	rod Assi	luction - Mat gnment prol				of the problem in Assignment	15		
5	comp		gical seq	uen	ices - Rules o				work and basic ons - Concurrent	15		
1 Pub Unit 10.1	lishers, I II : Cha 3, Unit I	New Delhi, 16th apter 4 Section IV : Chapter 1	th Edition 2 s 4.1, 4.3, 4 1 Sections	2014 1.4 , 11.1	. Unit I : Chapte Unit III : Chapte to 11.4, Unit V Books for Re	Man Mohan, Sul er 1, 2 & 3 Section er 10 Sections 10 : Chapter 25 Sec	ons 1.1 0.1, 10. ctions 2	to 1 2, 10	2 Sons Educational 3, 1.10, 2.1 to 2.4, 3.2 .5, 10.8, 10.9, 10.10, to 25.6			

T	itle o			PTIMIZ ECHNIQ			Nature of the Course	Min	ıor	Subject Code			
Cr	edits	4	Semest			Type of course	Theory	No		Hours of ching		75	
In	iterna	al Asses (IA	sment Marl A)	25]	End Semester (ES		75		uration of E	SE	3 hrs	
C	ourse	Prerec	quisites if	Basic m	athe	matical and pro	oblem solving s	kills					
						Course Out	comes						
СО	, ,				-		ology related ems with mul		-		ms a	nd	
СО	17.	-			-		n games, ind lutions for va						
СО			contexts, incenty.	cludi	ng								
СО	14	when the value of money changes or when equipment fails suddenly. Apply inventory control models to solve real-world problems, focusing of Economic Order Quantity (EOQ) model and handling price breaks and short											
СО	05	Analyze queueing systems using various models, understand the classification of queueing models, and apply the Poisson queueing systems for different practical scenarios.											
Uni	it No					Course Cont	tent				No.	of Hours	
					Th	eory Compone	nt (75 Hours)						
	1	used	in seque	encing -	-Pro		blem of seque jobs through	_				15	
	2	- the	e maximin	- minir es - gra	nax	principle -	o sum games Games without of 2 x n and	out sa	ıddl	e points -		15	
	3	of m	oney does noney char	not cha	nge th t	with time – ime – Repla	Replacement Replacement decement of e	t polic	су и	hen value		15	
	4	suddenly - Group replacement policy . Inventory Control : Costs associated with inventories – Factors affecting inventory control - An inventory control problem – The concept of EOQ – Deterministic inventory with no shortages – Deterministic inventory problem with shortages – problems of EOQ with price breaks.											
	5	queu Que	ueing mode	els – De tems –	fini Mo	tion of trans odel I { (Model V {(M/	ueing system ient and stea I/M/1):(∞/FII M/C):(∞/ <i>FIF</i>	dy sta FO)}	ates	– Poisson		15	
1	2014 Unit 492,	Prescribed Text anti Swarup, P.K. Gupta and Man Mohan, Operations Research, 16th edition, Sultan Chand and Sons, Reprint 014. Unit I: Chapter 12- sec 12.1 to 12.5 pp.327 – 338 (nit II: Chapter 17- sec 17.1 to 17.7 pp.443 – 464, Unit III: Chapter 18 – sec 18:1, 18:2.1,18:2.2,18:3 pp.478 – 92, Unit IV: Chapter 19 – sec 19.6 to 19.12 pp. 510 – 538, Unit V: Chapter 21 – sec 21:3, 21:7, 21:8, 21:9, pp. 520, 500, 506 to 604, 608 to 610, 613to 618											

pp.589,590,596 to 604, 608 to 610, 613to 618

	Books for Reference
1	Resource Management Techniques(Operations Research) by V. Sundaresan, K. S. Ganapathy Subramanian, K. Ganesan – A. R. Publications
2	Operations Research: An Introduction, 9th edition, Hamdy A.Taha, Pearson, 2010

Title cou		he	APP	LIED ST	ΓΑΤ	ISTICS	Nature of the Course	Mi	nor	Subject Code				
Credits	}	4	Semest	er		Type of course	Theory	No		Hours of ching		75		
Intern	al A	Assess (IA	ment Mark	25		End Semester (ES		75	D	ouration of E	SE	3 hrs		
Cours			uisites if	Basic m	athe	`	oblem solving s	skills	ı					
		any				Course Ou	tcomes							
CO1			tand and a nt data.	pply dif	fere	ent types of d	iagrammatic	and g	rapl	nic presenta	tions	to		
CO2		ılcula d mo	h as mean, 1	nedi	an,									
CO3	rar	Understand and compute measures of dispersion, including range, interquartil range, mean deviation, and standard deviation, and apply them in real-life data												
CO4		Analyze the relationship between two variables through correlation analysis, using Pearson's and rank correlation methods.												
CO5	_	apply regression analysis to predict and understand the relationship between ariables using regression lines and equations.												
Unit No						Course Con	tent				No.	of Hours		
2		Consoling Diagrams Limit Meas Arith Mean Series Mediof Merit Mode	rams, Typerations of Inures of Cometic Men-Discrete s, Merits and Calculates and Limes: Calculates and Limes: Calculates	iagrams bes of Pie Diag entral V an Indi Series, nd Limi ation of itations	Bagran Valuvidu Ca iitati f M of Mo Mo	ns. al: Arithmetical Observate ons of Arithmetical Arithmetical Consumer of Arithmetical Calculation Median ode-Individual	Two-Dime Two-Dime C Mean: Cal ions, Calcula F Arithmetic metic Mean. dual Observa n of Median-	culation Mea	sion al l ion of 2 n C , Co inuc	al or Bar Diagrams of Simple Arithmetic Continuous omputation ous Series, ulation of		15		
3	Mode-Discrete Series, Calculation of Mode-Continuous Series, Merits and Limitations of Mode. Measures of Dispersion: Significance of Measuring Variation, Properties of a Good Measure of Variation, The Interquartile Range or the Quartile Deviation, Merits and Limitations, The Mean Deviation, Calculation of Mean Deviation, Calculation of Mean Deviation, Difference Between Mean Deviation and Standard Deviation, Calculation of Standard Deviation, Merits and Limitations.													

	4	Correlation Analysis: Types of Correlation, Scatter Diagram Method, Merits and Limitations of the Method, Karl Pearson's Coefficient of Correlation, Direct Method of Finding Out Correlation Coefficient,	15
		Origin is made and Problems, Rank Correlation Coefficient, Merits and	
		Limitations of the Rank Method.	
		Regression Analysis: Uses of Regression Analysis, Difference Between	
	_	Correlation and Regression Analysis, Regression Lines, Regression	15
	5	Equations, Regression Equation of Y on X, Regression Equation of X	15
		on Y and Problems	
		Prescribed Text	
1	S.P.G	UPTA, "Statistical Methods", Sultan Chand &Sons, Educational Publishers, New Delhi,2016	
		Books for Reference	
1	P.R.V	ittal, "Mathematical Statistics", Margham Publications, 2016	

LIST OF MINOR COURSES-STREAM III

Physics, Chemistry, other science courses (Other than Mathematics)

T	itle of			IATRIC		Nature of	Min	ıor	Subject					
Cre	cours edits	se 4	Semeste		METRY Type of course	Theory	No	. of	Code Hours of ching		75			
		(IA	/	25	End Semester (ES		75	D	uration of E	SE	3 hrs			
Cou any	rse P	rerequi	sites if	Basic m	athematical and pr		skills							
					Course Ou									
CO			stand and a ar equation		e concept of ran	k of matrices	and c	cons	sistency of s	syste	ms			
CO	Z				eigenvalues and -Hamilton theor	_	of sq	uar	e matrices	and 1	the			
CO	Gain proficiency in the application of De Moivre's theorem and circular and													
CO	4	Acquire skills in calculating logarithms of complex quantities and expanding												
CO			methods for	or the s	ummation of tl	he series, incl	luding	5						
Uni	t No				Course Con	itent				No.	of Hours			
		•			Theory Compone	ent (75 Hours)					-			
	1				trices – Consist s (statement onl	•			near non –		15			
					a square matrix				values and					
	2	(state	ement only	y) – sim	ors of a square n ple problems – agonal form	-	-				15			
,	3	De M		eorem a	and its applicati	ons – Direct a	and In	iver	se circular		15			
	4		rithm of		plex quantity-	Expansion	of Tr	igo	nometrical		15			
	5	Greg	ory's series	s- Sumn	nation of series						15			
	D . r	D 17'	1 411 135 1		Prescribe									
1			•		Margham Publication		.1 (7							
2	_	-	y, S. Narayana vt. Ltd, (1997)		. Manicavachagom		athan (F	rınte	ers &					
	7 1 7	D:1 D:1	l'e Higher Eng	ingering M	Books for R (athematics, (9e), Rou		rancis C	trour	2021					

Theory Component (75 Hours) 1		Subject Code	Minor	Nature of the Course	LUS	CALCU			Title cou				
Course Prerequisites if any Basic mathematical and problem solving skills Course Outcomes Coll Apply nth derivative, standard results, trigonometric transformation, and Leibn formula. CO2 Understand and use total differential coefficients, Euler's theorem, and partial derivatives for functions of two variables. CO3 Apply methods for finding maxima and minima using Lagrange's method of undetermined multipliers. CO4 Calculate the radius and center of curvature, and use Cartesian formula for radi curvature and envelope. CO5 Integrate rational and irrational algebraic functions, apply properties of definite integrals, and evaluate double and triple integrals. Unit No Course Content Theory Component (75 Hours) 1 nth derivative — Standard results — Trigonometrical transformation — Formation of equations involving derivatives — Leibnitz formula Total differential coefficients — Euler's theorem — Partial derivatives of a function of two functions - Maxima and Minima of two variables — Lagrange's method of undetermined multipliers 3 Circle, radius, and center of curvature — Cartesian formula for the radius of curvature — envelope 4 Integration of rational algebraic functions — Integration of irrational algebraic functions — Properties of definite integrals Integration by parts — reduction formula, Bernoulli's formula — Evaluation of double integral (Cartesian form only) — Triple integral	75			·	course								
Course Outcomes Apply nth derivative, standard results, trigonometric transformation, and Leibn formula. Understand and use total differential coefficients, Euler's theorem, and partial derivatives for functions of two variables. Apply methods for finding maxima and minima using Lagrange's method of undetermined multipliers. Calculate the radius and center of curvature, and use Cartesian formula for radi curvature and envelope. Integrate rational and irrational algebraic functions, apply properties of definite integrals, and evaluate double and triple integrals. Unit No Course Content Theory Component (75 Hours) 1	3 hrs	Duration of ESE	75 D			25	A)	(
Apply nth derivative, standard results, trigonometric transformation, and Leibn formula. CO2 Understand and use total differential coefficients, Euler's theorem, and partial derivatives for functions of two variables. CO3 Apply methods for finding maxima and minima using Lagrange's method of undetermined multipliers. CO4 Calculate the radius and center of curvature, and use Cartesian formula for radicurvature and envelope. CO5 Integrate rational and irrational algebraic functions, apply properties of definite integrals, and evaluate double and triple integrals. Unit No Course Content No Theory Component (75 Hours) 1 nth derivative — Standard results — Trigonometrical transformation — Formation of equations involving derivatives — Leibnitz formula 2 function of two functions — Euler's theorem — Partial derivatives of a function of two functions — Maxima and Minima of two variables — Lagrange's method of undetermined multipliers 3 Circle, radius, and center of curvature — Cartesian formula for the radius of curvature — envelope 4 Integration of rational algebraic functions — Integration of irrational algebraic functions - Properties of definite integrals Integration by parts — reduction formula, Bernoulli's formula — Evaluation of double integral (Cartesian form only) — Triple integral			xills	oblem solving s	thematical and pr	Basic ma	quisites if		Cour				
formula. CO2 Understand and use total differential coefficients, Euler's theorem, and partial derivatives for functions of two variables. CO3 Apply methods for finding maxima and minima using Lagrange's method of undetermined multipliers. CO4 Calculate the radius and center of curvature, and use Cartesian formula for radic curvature and envelope. CO5 Integrate rational and irrational algebraic functions, apply properties of definite integrals, and evaluate double and triple integrals. Unit No Course Content Theory Component (75 Hours) 1 No Theory Component (75 Hours) 1 Total differential coefficients – Trigonometrical transformation – Formation of equations involving derivatives – Leibnitz formula 2 function of two functions -Maxima and Minima of two variables – Lagrange's method of undetermined multipliers 3 Circle, radius, and center of curvature – Cartesian formula for the radius of curvature – envelope 4 Integration of rational algebraic functions – Integration of irrational algebraic functions - Properties of definite integrals Integration by parts – reduction formula, Bernoulli's formula – Evaluation of double integral (Cartesian form only) – Triple integral													
derivatives for functions of two variables. Apply methods for finding maxima and minima using Lagrange's method of undetermined multipliers. Calculate the radius and center of curvature, and use Cartesian formula for radic curvature and envelope. Integrate rational and irrational algebraic functions, apply properties of definite integrals, and evaluate double and triple integrals. Unit No Course Content No Theory Component (75 Hours) 1 nth derivative — Standard results — Trigonometrical transformation — Formation of equations involving derivatives — Leibnitz formula Total differential coefficients — Euler's theorem — Partial derivatives of a function of two functions -Maxima and Minima of two variables — Lagrange's method of undetermined multipliers Circle, radius, and center of curvature — Cartesian formula for the radius of curvature — envelope Integration of rational algebraic functions — Integration of irrational algebraic functions - Properties of definite integrals Integration by parts — reduction formula, Bernoulli's formula - Evaluation of double integral (Cartesian form only) — Triple integral	ıitz	tion, and Leibn	nsforma	onometric tra	lard results, trig	ve, stan			CO1				
undetermined multipliers. Calculate the radius and center of curvature, and use Cartesian formula for radic curvature and envelope. Integrate rational and irrational algebraic functions, apply properties of definite integrals, and evaluate double and triple integrals. Unit No Course Content No. Theory Component (75 Hours) 1 nth derivative — Standard results — Trigonometrical transformation — Formation of equations involving derivatives — Leibnitz formula Total differential coefficients — Euler's theorem — Partial derivatives of a function of two functions -Maxima and Minima of two variables — Lagrange's method of undetermined multipliers Circle, radius, and center of curvature — Cartesian formula for the radius of curvature — envelope Integration of rational algebraic functions — Integration of irrational algebraic functions - Properties of definite integrals Integration by parts — reduction formula, Bernoulli's formula — Evaluation of double integral (Cartesian form only) — Triple integral		em, and partial	's theore	icients, Euler					CO2				
Calculate the radius and center of curvature, and use Cartesian formula for radicurvature and envelope. Integrate rational and irrational algebraic functions, apply properties of definite integrals, and evaluate double and triple integrals. Unit No Course Content No Theory Component (75 Hours) 1		e's method of	agrange	inima using I	maxima and m				CO3				
Integrate rational and irrational algebraic functions, apply properties of definite integrals, and evaluate double and triple integrals. Unit No Course Content No Theory Component (75 Hours) 1 nth derivative — Standard results — Trigonometrical transformation — Formation of equations involving derivatives — Leibnitz formula 1 Total differential coefficients — Euler's theorem — Partial derivatives of a function of two functions -Maxima and Minima of two variables — Lagrange's method of undetermined multipliers 2 Circle, radius, and center of curvature — Cartesian formula for the radius of curvature — envelope 3 Circle, radius, and center of curvature — Integration of irrational algebraic functions — Properties of definite integrals 4 Integration by parts — reduction formula, Bernoulli's formula — Evaluation of double integral (Cartesian form only) — Triple integral	us of	formula for radi	rtesian f	re, and use Ca	enter of curvatu	us and co	ate the radio	Calcu	CO4				
Theory Component (75 Hours) 1 nth derivative — Standard results — Trigonometrical transformation — Formation of equations involving derivatives — Leibnitz formula 2 Total differential coefficients — Euler's theorem — Partial derivatives of a function of two functions -Maxima and Minima of two variables — Lagrange's method of undetermined multipliers 3 Circle, radius, and center of curvature — Cartesian formula for the radius of curvature — envelope 4 Integration of rational algebraic functions — Integration of irrational algebraic functions - Properties of definite integrals Integration by parts — reduction formula, Bernoulli's formula — Evaluation of double integral (Cartesian form only) — Triple integral		erties of definite	Integrate rational and irrational algebraic functions, apply properties of defin										
Theory Component (75 Hours) nth derivative — Standard results — Trigonometrical transformation — Formation of equations involving derivatives — Leibnitz formula Total differential coefficients — Euler's theorem — Partial derivatives of a function of two functions -Maxima and Minima of two variables — Lagrange's method of undetermined multipliers Circle, radius, and center of curvature — Cartesian formula for the radius of curvature — envelope Integration of rational algebraic functions — Integration of irrational algebraic functions - Properties of definite integrals Integration by parts — reduction formula, Bernoulli's formula - Evaluation of double integral (Cartesian form only) — Triple integral	o. of Hours	N			*	date dot	is, and evan		Unit No				
nth derivative – Standard results – Trigonometrical transformation – Formation of equations involving derivatives – Leibnitz formula Total differential coefficients – Euler's theorem – Partial derivatives of a function of two functions -Maxima and Minima of two variables – Lagrange's method of undetermined multipliers Circle, radius, and center of curvature – Cartesian formula for the radius of curvature – envelope Integration of rational algebraic functions – Integration of irrational algebraic functions - Properties of definite integrals Integration by parts – reduction formula, Bernoulli's formula - Evaluation of double integral (Cartesian form only) – Triple integral		111											
function of two functions -Maxima and Minima of two variables – Lagrange's method of undetermined multipliers Circle, radius, and center of curvature – Cartesian formula for the radius of curvature – envelope Integration of rational algebraic functions – Integration of irrational algebraic functions - Properties of definite integrals Integration by parts – reduction formula, Bernoulli's formula - Evaluation of double integral (Cartesian form only) – Triple integral	15			rigonometrica	rd results – T				1				
Circle, radius, and center of curvature – Cartesian formula for the radius of curvature – envelope Integration of rational algebraic functions – Integration of irrational algebraic functions - Properties of definite integrals Integration by parts – reduction formula, Bernoulli's formula - Evaluation of double integral (Cartesian form only) – Triple integral	15			and Minima	ons -Maxima a	o functi	tion of two	fun	2				
algebraic functions - Properties of definite integrals Integration by parts – reduction formula, Bernoulli's formula - Evaluation of double integral (Cartesian form only) – Triple integral	15	r the radius	mula for	- Cartesian for	r of curvature -				3				
Integration by parts – reduction formula, Bernoulli's formula - Evaluation of double integral (Cartesian form only) – Triple integral	15	f irrational	ration of	_	•	rational	gration of	Inte	4				
(Cartesian form only)	15			ormula, Bern	reduction f	parts double is	gration by uation of o	Into	5				
Prescribed Text		·					·	1					
Calculus Volume — I, T. K. Manickavachagom Pillai, Printers and Publishers (May1992 Edition) Unit 1: Chapter 3 – 1.1, 1.2, 1.3, 1.4,1.5, 1.6, 2.1, Unit 2: Chapter 8-1.3, 1	.4, 1.5, 1.6,	2: Chapter 8-1.3, 1	, 2.1, Unit	2, 1.3, 1.4,1.5, 1.6	Chapter $3 - 1.1, 1.2$	on) Unit 1:	May 1992 Editi	ishers (1 Pul				
1.7, 4, 4.1, 5, Unit 3: Chapter 10 – 1.1, 1.2, 2.1, 2.2, 2.3, 2.4, 2.5 Calculus Volume II, S.Narayanan and T.K. Manickavasagam Pillai (2008) Unit 4: Chapter 1: 7.3, 7.4, 7.5, 8, 11, Unit 5: Chapter 1: 12,13,14, 15.1, and Chapter 5: 2, 4,		er 5: 2, 4.		gam Pillai (2008)	l T.K. Manickavasa	ayanan an	ume II , S.Nar	ulus V	, Cal				
Books for Reference		,		eference	Books for Ro								
1 Integral Calculus, N. P. Bali, Laxmi Publications, Delhi, (1991)													
 Calculus(2nd Edition), Lipman Bers and Frank Karal, Holt McDougal, 1976 Thomas' Calculus 12th Edition, George B.Thomas, Maurice D.Weir and Joel Hass, Pearson Education, 2015 		Education 2015	Pearson Fo										

Т	itle o	of the rse	VEC	CTOR C	ALCULUS	Nature of the Course	Mi	nor	Subject Code			
	edits		Semest		Type of course	Theory	No		Hours of aching		75	
In	tern		ssment Mark A)	25	End Semester (ES		75	Г	Ouration of E	SE	3 hrs	
C	ours	e Prere any	equisites if	Basic m	athematical and pr	oblem solving s	kills					
				•	Course Ou	tcomes						
CO	1	To atta	ain the basic	e knowle	edge on vector c	alculus.						
СО) Z		stand and apations.	pply vec	tor differentiation	on, including	the g	radi	ent and its p	hysi	cal	
CO				ding of	divergence and	curl, and their	r app	licat	tions in vect	or ca	alculus.	
	Gain an understanding of divergence and curl, and their applications in vector integration techniques such as line, surface, and volume integration											
			em, and Sto									
CO	ו כנ	theore	em, and sto	KC 5								
Un	it No		No.	of Hours								
					Theory Compone	ent (75 Hours)						
	1	deri ope	vative of po	sition vo	 Differentiation Physical Direction and 	applications -	– Vec	ctor	differential		15	
	2		ergence and ce – Simple		Formula involv ns.	ing operator,	opera	ators	s involving		15	
	3	Vec		ion - Lir	ne integral – Sur	face integral	– Vol	lum	e integral –		15	
	4	Gau	ıss divergen	ce theor	em – Green's th	eorem (in spa	ce) (S	State	ment only)		15	
	5	Stol		n - Gree	n's theorem (in ns.	. , ,	nent	only	v) – Simple		15	
	~ -		1		Prescribe							
1	Ltd.	(1995).	UNIT I Chapte	er 4 Sectio	gom Pillai, Vector A ns 1 – 8, UNIT II C , UNIT V Chapter 6	hapter 4 Sections Sections 9, 10				6 Sec	tions 1 –	
	3.5.5	771			Books for R							
2					sh Nath and Co., Eigh		am Duk	licati	one Channai (20	104)		
4	г.К.	v mai, V	ector analysis, F	mary near C	Seometry & sequences	and series, wargn	aiii Pud	ncail	ons, Chemiai (20	v∪ 4 J.		

Title	of th	e		TRODU RENTIA		ON TO QUATIONS	Nature of the Course	Min	nor	Subject Code		
Credit			Semest			Type of course	Theory	No		Hours of aching		75
Inter	nal A	ssess (IA	sment Mark	25	5	End Semester (ES		75		ouration of E	SE	3 hrs
Course any	Prer	equi	sites if	Basic r	nathe		oblem solving s	kills				
CO1			tand and so		lina	Course Ou ry differentia	l equations ar	nd the	ir a	pplications,	incl	ıding
CO2	Sol	e li		rential o	equa	tions with co	onstant coeffic	eients	and	simultaneo	ous	
CO3	For	n p	artial diffe	rential	equa	ations and so	lve them using	g Lag	ran	ge's method	ls.	
CO4	con	stan	t coefficie	nts usir	ig th	e Charpits m						
CO5	App prol			alue pr	oble	ems to transv	erse vibration	s and	one	e-dimension	al he	at flow
Unit No	,		No.	of Hours								
						neory Compone					1	
	re	educ	cible to the	linear	forn	n - Exact diff	inear equation Perential equat	ions -	– Eq	quations of		
1	tł	ne F	first, but of	f highe	r deg	gree – Equat	ions solvable	for d	y/dx	k, solvable		15
	fe	or y	, solvable f	for x, C	laira	ut's form and	l singular solu	itions	-g	eometrical		
	n	ear	ning of diff	ferentia	l equ	uations – ortł	nogonal trajec	tories	S.			
	L	inea	ar Differer	ntial eq	uatio	ons with con	stant coefficie	ents –	- Но	mogenous		
2				-			linear differ			_		15
			rential equ			•						
	F	orm	nation of P	artial d	iffer	ential equati	ons – by elim	inatio	on o	f arbitrary		
	c	onst	tants – by	elimina	atior	of arbitrary	functions –	Defin	es (of general,		4=
3	р	artio	cular, and	comp	lete	solutions -	Singular inte	egral	_]	Lagrange's		15
	n	eth	od of solv	ing the	line	ar equation P	p+Qq=R					
						-	erential equa	tion o	of so	econd and		
4	h	ighe	er order wi	th cons	tant	coefficients.	•					15
	В	our	ndary valu	e probl	ems	method of s	separation of	varia	ble	transverse		
5			•	-			nsional heat					15
			esian form	_						•		
						Prescribed					<u> </u>	
							Viswanathan (Pri					
							d partial different	ial equ	ation	s VRB Publish	ers, (2	2009).
3 Tra	instori	ns aı	na Partial diff	ierential e	equati	ons by Dr. A. Si Books for R						
1 Int	roduct	ory o	course in Diff	ferential e	quati		y, Orient Longm	an (190	67)			
					•		Publications , Cl			9) e-Learning S	Source	<u> </u>

Ti	itle of cours			RIER SE ACE TR		ES AND SFORMS	Nature of the Course	Min	nor	Subject Code		
	edits	4	Semest		ı	Type of course	Theory	No		Hours of ching		75
		(IA		25		End Semester (ES		75	D	ouration of E	SE	3 hrs
Co	ourse	Prereq any	uisites if	Basic ma	athe	ematical and pr	oblem-solving s	kills				
						Course Ou						
CO				_		conditions for e expansions.	r Fourier serie	es exp	oans	ions, includ	ing c	odd and
CO	Z I		the compl		1 0	f the Fourie	er series and	Pars	eval	's identity	for	solving
CO	3 S	olve s		us differ		ial equations	and transfor	m eq	uati	ons using n	netho	ds like
CO	4 C	Compre	ehend and	utilize tł	ne l	Laplace trans	form, its prop	ertie	s, ar	nd shifting t	heore	ems for
CO	5 S		ordinary		_		with consta	nt c	oeff	icients usi	ng I	Laplace
Uni	t No					Course Con	tent				No.	of Hours
					Tł	neory Compone	nt (75 Hours)					-
į	1			_		ral Fourier ser range cosine	ries Odd and leseries.	Even	Fun	ctions half		15
2	2	Com	plex form	of Fouri	er s	series Parseva	al's Identity.					15
	3	indep		riables –	- M	lethod of var	g the dependriations of par					15
4	4	Define $\sin b$ shifting the Letter e^{-at} Transfer	nition tran t , t^n , wing theorem caplace trances bt ,	sform of here n if the nsform of e^{-at} sin $f'(t)$ and	f 1 s a La of e	- transform a positive in place transform $e^{-at} f(t)$ is Q $e^{-at} t^n$	of the function of a function of a function $b(s + a) - La$ of a function of a functi	t, c on f(t aplace hiftin	osh () is e tra g tl	at - first $\emptyset(s)$, then ansform of heorem -		15
;	5	Appl	ication to	solution		e above trans		ation	witl	n constant		15
1	Dr. 1/4	DV	Joorthy & V	Conthilyed	isn.	Prescribed		iol car	otion	g V/DD Dukligt	agre (2000)
2							l partial differenti Viswanathan (Pri					
	1.11.1	· · · · · · · · · · · · · · · · · · ·			,	Books for Re	,					<u> </u>
1						ons , D.A.Murra	y, Orient Longm					
2	Engin	eering N	Mathematics,	M.K.Venl	cata	raman, National	Publications, Ch	nennai	(2009)	9)		

Title cou	of t		NUM	ERICAL	AN	ALYSIS	Nature of the Course	Mi	nor	Subject Code		
Credits	5	4	Semest	er		Type of course	Theory	No		Hours of ching		75
Intern	al A	Asses: (IA	sment Mark A)	25	I	End Semester (ES		75	D	ouration of E	SE	3 hrs
Cours	e Pı	re rec	quisites if	Basic m	athe		oblem solving s	skills				
	• •					Course Ou		,				
CO1	equ	uatio		nethods			ods for solvi successive a	_	_			
CO2							ebraic equati del iteration.	ons u	sing	methods s	uch a	as Gauss
СО3	Gr	egor	y, Lagrang	e, and G	aus		operators, ir ods for numerule.					
CO4	ser	ies a	nd Picard'	s metho	d		uations using					
CO5	Eu	ler's		utta (sec	onc	l and fourth	ls like Euler order), and M		-			
Unit No						Course Con	tent				No.	of Hours
						neory Compon						
1]	Bolz	ano's bise	ection n	neth		nd transcend ssive approx n method.					15
2	(elimi		thod - C			ear algebraic nination met					15
3] 1	Finit back Lagr inter	e differenc ward inte ange's in polation	e operat rpolation terpolati formula	1 – on –	Newton's formula formula formula	n – Newton-C divided dif or uneven differentiat on's 1/3rd rul	ferend intervalion	ce als	formula – – Gauss		15
4]	Num	erical solund order – S	itions o	f C	ordinary diff	Ferential equa- Taylor serie	ations				15
5	-	– Ru		method		second and	thod - Modif fourth order					15
1 Uni	t 1:	Chap		nit 2: Cha		5, Unit 3: Chap	nkataraman, Natioter 6 and 9, Uni					
1 Cor	nput	ter ori	ented Numeri	cal Metho	ds by	Books for R V.Rajaram–PI	teference H(P)Ltd. e-Leari	ning Sc	urce			
- 1001	pu	011			U	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1 /Lu. 0 Luli	5 50				

LIST OF SKILL ENHANCEMENT COURSES (SEC)

Title cou	of th	ne	PYTHON	Subject Code	MTDSSI	E 01						
Credi	its	3	Seme	ster	1	Type o		Practical		f Hours of eaching	60	
In			assessment as (IA)	50		End S Examina			50	Duration ESA	of 3 h	rs
Cour		rere any	quisites if	Basic	orob	lem-solvin			,			
						Course	Outo	comes				
CO1	Ur	ıder	stand the	basics	of v	vriting Py	tho	n code				
CO2	Im	ple	ment prog	grams u	sing	g lists, tup	les	, and dicti	onaries			
CO3	Ur	nder	stand the	use of	con	trol struct	ure	S				
CO4	At	oilit	y to write	progra	ms	using pac	kag	es				
CO5	Ur	nder										
Unit No	Course Content Theory Component (30 Hours)										No. of Ho	urs
					The	eory Comp	onen	t (30 Hours)			
1	Pyr typ Ev ope Fur Co	thones, alua erat netionpo	n, debugg Variable ating exp ions, Op- on calls, osition, A	ting, Forestion or estion or estion or estion or the condition of the condition or estimate the condition or estimate or estim	ormiables, sonverew and	al and nate names Operator on strings ersion, Ty functions I argumen	atur an s a s, (ype s, De	n programal languaged keyword operations coercion, efinitions the results.	ges, Vards, Stands, Con, Co Math f and use and pa	olues and atements, order of omments, functions, s, Flow of	6	
2	 Conditionals and recursion: The modulus operator, Boolean expressions, Logical operators, Conditional execution, Alternative execution, Chained conditionals, Nested conditionals, The return statement, Recursion, Stack diagrams for recursive functions, Infinite recursion, Keyboard input, Fruitful functions, Return values, Program development, Composition, Boolean functions, More recursion, Leap of faith, Checking types. 									xecution, ditionals, recursive functions, Boolean	6	

3	Iteration and Strings: Multiple assignments, The while statement, Tables, Two-dimensional tables, Encapsulation and generalization, More encapsulation, Local variables, More generalization, Strings: A compound data type, Length, Traversal and the for loop, String slices, String comparison, Strings are immutable, A find function, Looping and counting, The string module, Character classification.	6						
4	Lists and Tuples: List values, Accessing elements, List length, List membership, Lists and for loops, List operations, List slices, Lists are mutable, List deletion, Objects and values, Aliasing, Cloning lists, List parameters, Nested lists Matrices, Strings, and lists, Tuples: Mutability and tuples, Tuple assignment, Tuples as return values, Random numbers, List of random numbers, Counting, Many buckets, A single-pass solution, Dictionaries: Dictionary operations, Dictionary methods, Aliasing and copying, Sparse matrices, Hints, Long integers, Counting letters.							
5	Files and exceptions: Text files, Writing variables, Pickling, Exceptions Classes and objects: User-defined compound types, Attributes, Instances as arguments, Sameness, Rectangles, Instances as return values, Objects are mutable, Copying, Classes and functions Time, Pure functions, Prototype development versus planning, Classes and methods: Object-oriented features, Print Time, A more complicated example, Optional arguments, The initialization method, Points revisited, Operator overloading, Polymorphism.							
	Exercise No Practical Component - Internal Assessment marks (IA)-50							
1	Exchange the values of two variables							
2	Finding minimum among n variables							
3	Perform Simple sorting							
4	Generate the Student's marks statement							
5	Find the square root, GCD, exponentiation	30						
6	Sum the array of numbers							
7	Perform linear search, binary search							
8	1 crioini watix operations using watin y							
9	1 crioini Datairanic operations using I andas							
10								
Text Books								
	Allen Downey, Jeffrey Elkner, Chris Meyers How to Think Like a Computer Scientist, Learning with Python, Green Tea Press, 2002							

2	Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly											
	Publishers, 2016.											
	Books for Reference											
1	Mark Lutz, Learning Python, O'Reilly, 5 th Edition, 2013.											
2	Daniel Liang, Introduction to Programming using Python , Pearson, 1st Edition, 2021.											
3	Wes Mc Kinney, Python for Data Analysis , O'Reilly Media, 2012.											
4	Tim Hall and J-P Stacey, Python 3 for Absolute Beginners, Apress, 1st Edition, 2009.											
5	Magnus Lie Hetland, Beginning Python: From Novice to Professional, Apress, 2 nd Edition, 2005.											

^{*}The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

Title of the course			R – PR	OGR Pract			Nature of the Course	SEC 2	Subject Code	MTDSSE02		
Credits	3	3 Semester 2 Type of course Practical No. of Hours of Teaching						60				
Interi	Internal Assessment Marks (IA) 50 End Semester Examination (ESA) 50 Duration of ESA									3 hrs		
Cour	Course Prerequisites if any Basic problem-solving skills											
						Course	e Outcomes					
CO1	Demonstrate proficiency in R programming basics, including installation opening, saving, and editing R code.											
CO2	Perfo	rm	basic ma	th op	erat	ions, assi	gn objects, an	d manip	ulate vectors	s in R.		
CO3	Anal	yze	e and mani	ipula	te m	natrices ar	nd arrays.					
CO4	Creat	te a	and manip	ulate	list	s and data	frames.					
CO5	Read	an	nd write fil	les in	R , 1	handling	R-ready datas	ets and	external data	files.		
Unit No)					Course	Content			No. of Hours		
	'				Tì	neory Comp	ponent (30 Hours	s)				
1	Co	nv	entions N	umbe	er, A	crithmetic	pening – Sav , assignment of jects – Vector	& Vecto	_	6		
2	Ma	atri	ices and A	Array	s: D	Defining a	n Matrix – Su nensional Arra	ıb settir	ng – Matrix	6		
3	No	n-	numeric V	alue	s: L	ogical Va	lues – Charac Data Frames.	ters - Fa	actors	6		
4	So Ba	me sic	Plotting	alues Usin	– U ng P	nderstand lot with	rcion ling Types, cla coordinate V and Text – gg	ectors -		6		
5	Re Ex	ad ter	ing and V	Writi	ng	Files, R-	Ready Data it Data files a	sets –	_	6		
Exercis	Exercise No Practical Component - Internal Assessment marks (IA)-50									No. of Hours		
1	1 Practi			ractice Installing, opening, and saving files in R.								
2	Create and store a vector that contains A sequence of integers. A threefold repetition of a real value Numbers divisible by 2.								30			
3		that are greater than 'n'										

	4	Write a program to Add and multiply two matrices							
	Write a program to transpose and find the inverse of a matrix.								
	6	Store a vector with 15 values as an object. Identify those equal to 6, those greater than or equal to 6, those less than $6 + 2$, those not equal to 6							
7		With the Weight (kg), height (cm), and Sex data of 10 students, create a plot of weight on the x-axis and height on the y-axis. Use different point characters or colors to distinguish between males and females and provide a matching legend. Label the axes and give the plot a title.							
	8 Demonstrate Visualization using ggplot2								
		Prescribed Text							
1	Tilman M.	Davies, The Book of R: A First Course in Programming and Statistics , No Starch	press, 2016.						
Books for Reference									
2	Bradley C.	Boehmke, Data wrangling with R, Springer, 2016.							
3	Andrea de	Vries, Joris Meys, R programming for Dummies , 2 nd Edition, Wiley, 2016.							

^{*}The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

Title o			LAT (Pract)	Nature of the Course	SE	SEC 3 Subject Code			MTDSSE03	
Credits	3	Semeste	,	3	Type of course	Practical			Hours of ching		60	
Interna	al Assess (IA	sment Mark)	50]	End Semester (ES		50		uration of l	ESA	3 hrs	
Course	Course Prerequisites if any Nil											
	Course Outcomes											
	Create basic LaTeX documents with appropriate formatting and demonstrated in Learning LaTeX."										ure as	
					tical equation sented in the	s and express book.	sions	usin	g LaTeX,	follow	ing the	
CO3	Format	and style I	LaTeX o	loci		ding to acade	mic s	stanc	lards, drav	ving fi	rom the	
CO4	Apply a		aTeX fe	eatu	res, as covere	ed in the book	, to cr	eate	complex	mathe	matical	
CO5	Use La	TeX for	research	ı, p	oublications,	and collaborned in the boo		pro	ojects in	mathe	matics,	
Unit No			•		Course Conto					No. o	of Hours	
_				Th	eory Compone	nt (30 Hours)				l		
1		duction to X, Resour				or Learning	LaT	eX,	Running		6	
2	Basic LaTe	: LaTeX: X, LaTeX	Sample Enviro	Do onm	ocument and nents: Lists,	Key Concep Centering, ing		• •	•		6	
3	Managing Vertical and Horizontal Spacing Typesetting Mathematics: Examples of Mathematical Typesetting, Equation Environments in LaTeX, Fonts, Hats, and Underlining in Mathematical Notation, Using Braces, Arrays, and Matrices, Creating Customized Commands, Theorem-like Environments in LaTeX, Miscellaneous Mathematical Notation and Styles										6	
4	Miscellaneous Mathematical Notation and Styles Further Essential LaTeX: Document Classes and Document Structure, Titles for LaTeX Documents, Sectioning Commands, Miscellaneous Extras: Spacing, Accented Characters, Dashes, Hyphens, Quotation Marks, Troubleshooting LaTeX: Error Identification and Common Errors										6	
5	More About LaTeX: Introduction to LaTeX Packages, Inputting External Files, Inserting Pictures and Graphics, Creating Bibliographies, Generating an Index, Exploring the History of LaTeX, Exploring Online LaTeX Resources and Professional Societies.										6	
Exercise No	Practical Component - Internal Assessment marks (IA)-50									No. o	of Hours	
1	Task: simple		oasic La h. Obje	ecti	ve: Familiar	with a title, a					30	
2		tting Text										

	Task: Create a document with different text styles (bold, italics,										
	underline), lists (itemized, enumerated), and tables.										
	Objective: Learn how to structure text and create lists and tables in										
	LaTeX.										
	Mathematical Typesetting										
	Task: Typeset various mathematical expressions and equations using										
3	different equation environments.										
J	Objective: Gain proficiency in mathematical typesetting, including using										
	subscripts, superscripts, and special characters.										
	Advanced Mathematical Notation										
	Task: Create a document with arrays, matrices, and customized										
4	commands for complex mathematical expressions.										
	Objective: Understand advanced mathematical typesetting and										
	customization of commands.										
	Theorem-Like Environments										
	Task: Create a document with theorem-like environments for definitions,										
5	theorems, proofs, and examples.										
	Objective: Learn to structure mathematical documents with proper										
	logical sections.										
	Document Structure and Sectioning										
	Task: Create a well-structured document using different sectioning										
6	commands (e.g., sections, subsections, subsubsections) with a table of										
	contents.										
	Objective: Master the document structure and organization in LaTeX.										
	Inserting Figures and Tables										
_	Task: Insert external images, create tables with captions, and adjust figure										
7	and table positions within the text.										
	Objective: Learn how to include and format figures and tables within										
	LaTeX documents.										
	Bibliography Management Tools: Crosts a hibliography section using BibToV or LaToV's built in										
8	Task: Create a bibliography section using BibTeX or LaTeX's built-in										
o	bibliography commands. Objective: Learn how to manage references and citations in academic										
	documents.										
	Creating Presentations with Beamer										
	Task: Create a simple presentation using the Beamer package, including										
9	slides with text, images, and bullet points.										
	Objective: Introduce students to LaTeX-based presentations.										
	Final Project										
	Task: Create a comprehensive document or presentation incorporating all										
10	the learned skills, with a focus on research or academic content.										
	Objective: Apply all the skills acquired throughout the course in a single										
	cohesive project.										
, I m	Prescribed Text Learning LeTeX" by David F. Griffiths and Deemand I. Higher										
1 "	Learning LaTeX" by David F. Griffiths and Desmond J. Higham Books for Reference										
2 T	The LaTeX Companion, 3rd edition (TTCT series) by Frank Mittelbach and Ulrike Fische										

^{*}The Course Instructor can customize the practical exercises and the number of exercises in the Practical Component

MULTIDISCIPLINARY COURSE (MLDC)

Offered by the Department of Mathematics

	tle of cours		BASI	C MAT	HEN	MATICS	Nature of the Course	MLDC			
Cre	dits	3	Semeste	er	II	Type of course	Theory	No	No. of Hours of Teaching		60
Int	ternal	Asses (IA	ssment Mark A)	25]	End Semester (ES		75	Duration of E	SE	3 hrs
Cour	rse Pr	erequ	isites, if	Basic m	athe	matical and pro	oblem-solving	skills			
	<u> </u>					Course Out					
CO						natrix transfo					
CO	S = S	olve l	linear systei	ns usin	g va	rious matrix	forms and po	olynoi	mial interpolation	on.	
CO	3 A	pply	logic and so	et theor	y op	erations to so	olve problem	s.			
CO			nclusion-exo m solving	clusion,	ade	dition/multip	lication rule	s, and	d pigeonhole p	rinci	ples in
CO:				tions c	omł	oinations and	l apply eleme	entary	probability to 1	orobl	ems
Unit		arour	are permana			Course Cont		Jirear y	producting to		of Hours
					Th	eory Compone	nt (60 Hours)				
		Line	ear System	- Mat				ix m	ultiplication –		10
1	_	properties of Matrix operations –Matrix transformation									12
2	2	Solution of linear system of equations – row echelon form – reduced row echelon form – Polynomial interpolation – inverse of a matrix – linear systems									12
3	3	_	ic – truth ta		lgeł	ora of propos	itions- logica	al arg	uments – sets-		12
4	ı	Principle of inclusion-exclusion – the addition and multiplication rules –								12	
5	5	Pern	nutations –	Combin	natio	ons – Elemen	tary Probabi	lity.			12
	D	1 77 1	D 1 P	TT*11 T -	1 .	Prescribed			T 1: 2011		
	Bernard Kolman, Dred. R. Hill, Introductory Linear Algebra, 8th edition – pearson, India 2011.										
2 Edgar G. Goodaire, Michael. M. Parmenter, Discrete Mathematics with Graph Theory, 3ePHI, India, 2011.											

Title of the course		ENGAG	COMMUNITY ENGAGEMENT AND SERVICE			Nature of the (Value added Course (VAC)		Subject Code	MTDSCE01		
Credits	2	Semeste	er	I	V	Type of course	Practical		No. of days		15	
Interna	Internal Assessment Marks (IA) 5					End Semes Examination (50				
Course	requisites, if ny						NIL					

Community Engagement

The Community Engagement Learning Project is a short course that offers students the chance to collaborate with a nonprofit or government organization through a group project chosen by the organization. Students will investigate the concept of community engagement, examine the role of the community sector in their local area, and analyze the operational context and tools the sector uses to deliver services, influence policies and programs, and share information with its clients. Additionally, the seminar program and hands-on collaboration with a local organization will enable students to develop a diverse range of skills.

Course Guidelines

- > The Community Engagement course is typically offered during the fourth semester.
- ➤ The course is evaluated out of a maximum of 100 marks, with assessments based on a report, presentation, and viva voce.
- > Students may complete the course as a group, however, each team member must submit an individual report.
- ➤ A faculty member, designated by the Head of the Department, will supervise the course.
- An internal examiner will oversee the course evaluation.
- > The course is designed to encourage student interaction with the end users.
- ➤ The chosen project should provide sufficient scope to apply and demonstrate the concepts learned during the course.
- ➤ Internal marks (based on Internship report, work dairy, etc.): 50 marks.
- External marks (based on presentation, viva voce, etc.): 50 marks

Title of the course		SUMMER INTERNSHIP FOR 45 DAYS			Nature of the Co	Skill Enhanceme Course (SE		Subject Code	MTDSSI01	
Credits	4	Semeste	er	1	Type of course	1 1 P			o. of days	45
Interna		ssment Marl (A)	KS	50 End Semester Examination (ESE) 50						
Course	Prere any	equisites if					NIL			

Summer Internship

A summer internship is a short-term work placement, usually during the summer break, where students gain hands-on experience in their field. It allows them to apply classroom theories in a real-world environment, develop both technical and soft skills, and build professional networks. Interns work on projects that expose them to industry practices and workplace dynamics, providing valuable insights into their future careers.

Course Guidelines:

- ➤ The Summer Internship course is typically offered during the fifth semester.
- ➤ The course is evaluated out of a total of 100 marks, with assessments based on a report, presentation, and viva voce.
- > Students may work in groups; however, each member must submit an individual report.
- ➤ A faculty member, designated by the Head of the Department, will supervise the course.
- ➤ An internal examiner will be responsible for evaluating the course.
- > The course is designed to encourage meaningful interaction with the end user.
- ➤ The selected internship project should provide ample opportunities to apply and demonstrate the concepts learned in the course.
- ➤ Internal marks (based on Internship report, work dairy, etc.): 50 marks.
- External marks (based on presentation, viva voce, etc.): 50 marks